分析 ①,圓(x-2)2+(y+1)2=1上任一點P(2+cosα,-1+sinα),則點P處的切線為cosα•(x-2)+sinα•(y+1)=1(α∈R);
②,當≠0時,直線的斜率k=-$\frac{cosα}{sinα}=-cotα$,存在不同的實數(shù)α1,α1,使cotα1=cotα1,相應(yīng)的直線l1,l2平行;
③,cosα•(x-2)+sinα•(y+1)=1⇒$\sqrt{(x-2)^{2}+(y-1)^{2}}sin(α+θ)=1$,所有使$\sqrt{(x-2)^{2}+(y-1)^{2}}<1$的點(x,y)都不在其上;
對于④,⑤由③可判定.
解答 解:對于①,圓(x-2)2+(y+1)2=1上任一點P(2+cosα,-1+sinα),則點P處的切線為cosα•(x-2)+sinα•(y+1)=1(α∈R),直線不會過一定點,故錯;
對于②,當≠0時,直線的斜率k=-$\frac{cosα}{sinα}=-cotα$,存在不同的實數(shù)α1,α1,使cotα1=cotα1,相應(yīng)的直線l1,l2平行,故正確;
對于③,cosα•(x-2)+sinα•(y+1)=1⇒$\sqrt{(x-2)^{2}+(y-1)^{2}}sin(α+θ)=1$,所有使$\sqrt{(x-2)^{2}+(y-1)^{2}}<1$的點(x,y)都不在其上,故正確;
對于④,⑤由③可得錯.
故答案為:②③
點評 本題考查了命題真假的判定,涉及到直線方程的知識,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年 級 性 別 | 高一年級 | 高二年級 | 高三年級 |
男 | 520 | y | 400 |
女 | x | 610 | 600 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $-\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {an}是等差數(shù)列且$\left\{{\frac{a_n}{n}}\right\}$遞增 | |
B. | Sn是等差數(shù)列{an}的前n項和,且$\left\{{\frac{S_n}{n}}\right\}$遞增 | |
C. | {an}是等比數(shù)列,公比為q>1 | |
D. | 等比數(shù)列{an},公比為0<q<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com