【題目】某單位科技活動(dòng)紀(jì)念章的結(jié)構(gòu)如圖所示,O是半徑分別為1cm,2cm的兩個(gè)同心圓的圓心,等腰△ABC的頂點(diǎn)A在外圓上,底邊BC的兩個(gè)端點(diǎn)都在內(nèi)圓上,點(diǎn)O,A在直線BC的同側(cè).若線段BC與劣弧所圍成的弓形面積為S1,△OAB與△OAC的面積之和為S2, 設(shè)∠BOC2

1)當(dāng)時(shí),求S2S1的值;

2)經(jīng)研究發(fā)現(xiàn)當(dāng)S2S1的值最大時(shí),紀(jì)念章最美觀,求當(dāng)紀(jì)念章最美觀時(shí),cos的值.(求導(dǎo)參考公式:(sin2x)'2cos2x,(cos2x)'=﹣2sin2x

【答案】(1) ();(2)

【解析】

依題意可得,故,,

,

1)當(dāng)時(shí),代入計(jì)算可得;

2)由

,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值;

解:過點(diǎn)于點(diǎn),則的中點(diǎn),又為等腰三角形,所以、、三點(diǎn)共線,

,故

1時(shí),,故,

答:當(dāng)時(shí),求的值為 ();

2,

,得(舍去)

,

0

單調(diào)遞增

極大值

單調(diào)遞減

,即時(shí),最大,即的值最大,

答:紀(jì)念章最美觀時(shí),cos的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)班級(jí)(各40名學(xué)生)進(jìn)行一門考試,為易于統(tǒng)計(jì)分析,將甲、乙兩個(gè)班學(xué)生的成績分成如下四組:,,,并分別繪制了如下的頻率分布直方圖:

規(guī)定:成績不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.

1)根據(jù)這次抽查的數(shù)據(jù),填寫下面的列聯(lián)表:

優(yōu)秀

不優(yōu)秀

合計(jì)

甲班

乙班

合計(jì)

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為成績是否優(yōu)秀與班級(jí)有關(guān)?

附:臨界值參考表與參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)的直線l與拋物線交于AB兩點(diǎn),以AB為直徑作圓,記為,與拋物線C的準(zhǔn)線始終相切.

1)求拋物線C的方程;

2)過圓心Mx軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)為了解學(xué)生在家參加線上教學(xué)的學(xué)習(xí)情況,對高三年級(jí)進(jìn)行了網(wǎng)上數(shù)學(xué)測試,他們的成績在80分到150分之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖:

若成績在區(qū)左側(cè),認(rèn)為該學(xué)生屬于網(wǎng)課潛能生,成績在區(qū)間之間,認(rèn)為該學(xué)生屬于網(wǎng)課中等生,成績在區(qū)間右側(cè),認(rèn)為該學(xué)生屬于網(wǎng)課優(yōu)等生

1)若小明的測試成績?yōu)?/span>100分,請判斷小明是否屬于網(wǎng)課潛能生,并說明理由:(參考數(shù)據(jù):計(jì)算得

2)該校利用分層抽樣的方法從樣本的,兩組中抽出6人,進(jìn)行教學(xué)反饋,并從這6人中再抽取2人,贈(zèng)送一份學(xué)習(xí)資料,求獲贈(zèng)學(xué)習(xí)資料的2人中恰有1人成績超過90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到直線的距離為,過點(diǎn)的直線交于、兩點(diǎn).

1)求拋物線的準(zhǔn)線方程;

2)設(shè)直線的斜率為,直線的斜率為,若,且的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為.過點(diǎn)的直線與拋物線相交于兩點(diǎn),、分別與軸相交于兩點(diǎn),當(dāng)軸時(shí),

1)求拋物線的方程;

2)設(shè)的面積為,面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,且的最小值為,則________,若P為邊AB上任意一點(diǎn),則的最小值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C分別是其左、右焦點(diǎn),過的直線l與橢圓C交于AB兩點(diǎn),且橢圓C的離心率為,的內(nèi)切圓面積為.

I)求橢圓C的方程;

II)若時(shí),求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率與雙曲線的離心率互為倒數(shù),分別為橢圓的左、右頂點(diǎn),且.

1)求橢圓的方程;

2)已知過左頂點(diǎn)的直線與橢圓另交于點(diǎn),與軸交于點(diǎn),在平面內(nèi)是否存在一定點(diǎn),使得恒成立?若存在,求出該點(diǎn)的坐標(biāo),并求面積的最大值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案