已知圓M:(+)2+y2=36,定點(diǎn)N(,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足,.
(1)求點(diǎn)G的軌跡C的方程;
(2)過(guò)點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即)?若存在,求出直線的方程;若不存在。說(shuō)明理由。
解:(1)由
得Q為PN的中點(diǎn)且GQ⊥PN,所以GQ為PN的中垂線.
因此|PG|=|GN|,從而|GN| + |GM|=|MP|=6,
故G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸長(zhǎng)=3,半焦距,
所以短半軸長(zhǎng)b=2,所以點(diǎn)G的軌跡方程是.
(2)因?yàn)?sub>,所以四邊形OASB為平行四邊形.
若存在直線使得,則四邊形OASB為矩形,所以.
若直線的斜率不存在,直線的方程為=2,
由,得
所以,這與矛盾,
故直線的斜率存在.
設(shè)直線的方程為y=k(-2),A(1,yl)、B(2,y2),
由得
(9k2+4) 2-36k2+36(k2―1)=0.
所以,①
故②
把式①、②代入,解得.
∴存在直線:3-2y-6=0或3+2y-6=0
使得四邊形OASB的對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓M:(x-)2+y2=,若橢圓C:+=1(a>b>0)的右頂點(diǎn)為圓M的圓心,離心率為.
(1)求橢圓C的方程.
(2)已知直線l:y=kx,若直線l與橢圓C分別交于A,B兩點(diǎn),與圓M分別交于G,H兩點(diǎn)(其中點(diǎn)G在線段AB上),且|AG|=|BH|,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓M:(x-)2+y2=,若橢圓C:+=1(a>b>0)的右頂點(diǎn)為圓M的圓心,離心率為.
(1)求橢圓C的方程.
(2)已知直線l:y=kx,若直線l與橢圓C分別交于A,B兩點(diǎn),與圓M分別交于G,H兩點(diǎn)(其中點(diǎn)G在線段AB上),且|AG|=|BH|,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓M:(+)2+y2=36,定點(diǎn)N(,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足,=0.
(1)求點(diǎn)G的軌跡C的方程;
(2)過(guò)點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),,是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即)?若存在,求出直線的方程;若不存在.說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com