【題目】已知在中,角的對(duì)邊分別為,且.
(1)求的值;
(2)若,求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)本問(wèn)考查解三角形中的的“邊角互化”.由于求的值,所以可以考慮到根據(jù)余弦定理將分別用邊表示,再根據(jù)正弦定理可以將轉(zhuǎn)化為,于是可以求出的值;(2)首先根據(jù)求出角的值,根據(jù)第(1)問(wèn)得到的值,可以運(yùn)用正弦定理求出外接圓半徑,于是可以將轉(zhuǎn)化為,又因?yàn)榻?/span>的值已經(jīng)得到,所以將轉(zhuǎn)化為關(guān)于的正弦型函數(shù)表達(dá)式,這樣就可求出取值范圍;另外本問(wèn)也可以在求出角的值后,應(yīng)用余弦定理及重要不等式,求出的最大值,當(dāng)然,此時(shí)還要注意到三角形兩邊之和大于第三邊這一條件.
試題解析:(1)由,
應(yīng)用余弦定理,可得
化簡(jiǎn)得則
(2)
即
所以
法一. ,
則
=
=
=
又
法二
因?yàn)?/span> 由余弦定理
得,
又因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)“”成立.
所以
又由三邊關(guān)系定理可知
綜上
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中常數(shù).
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為, 若在內(nèi)恒成立,則稱為函數(shù)的“類對(duì)稱點(diǎn)”,當(dāng)時(shí),試問(wèn)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域是,對(duì)于以下四個(gè)命題:
(1) 若是奇函數(shù),則也是奇函數(shù);
(2) 若是周期函數(shù),則也是周期函數(shù);
(3) 若是單調(diào)遞減函數(shù),則也是單調(diào)遞減函數(shù);
(4) 若函數(shù)存在反函數(shù),且函數(shù)有零點(diǎn),則函數(shù)也有零點(diǎn).
其中正確的命題共有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 是定義在(﹣1,1)上的奇函數(shù),且 .
(1)確定函數(shù)的解析式;
(2)證明函數(shù)f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 是某海灣旅游區(qū)的一角,其中,為了營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸和上分別修建觀光長(zhǎng)廊和AC,其中是寬長(zhǎng)廊,造價(jià)是元/米, 是窄長(zhǎng)廊,造價(jià)是元/米,兩段長(zhǎng)廊的總造價(jià)為120萬(wàn)元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開(kāi)發(fā)水上游樂(lè)項(xiàng)目,要求的面積最大,那么和的長(zhǎng)度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| ﹣ |= .
(1)求cos(α﹣β)的值;
(2)若﹣ <β<0<α< ,且sinβ=﹣ ,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx+sin(x+ ),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值;
(3)若f(α)= ,求sin 2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(I)求的解析式及單調(diào)遞減區(qū)間;
(II)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是圓心為的圓上的動(dòng)點(diǎn),點(diǎn), 為坐標(biāo)原點(diǎn),線段的垂直平分線交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)原點(diǎn)作直線交(1)中的軌跡于點(diǎn),點(diǎn)在軌跡上,且,點(diǎn)滿足,試求四邊形的面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com