△ABC的三個(gè)頂點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別為z1、z2、z3,若復(fù)數(shù)z滿足|z-z1|=|z-z2|=|z-z3|,則z對(duì)應(yīng)的點(diǎn)為△ABC的(    )

A.內(nèi)心                 B.垂心               C.重心                D.外心

解析:由幾何意義知,z對(duì)應(yīng)的點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離都相等,故z對(duì)應(yīng)的點(diǎn)是△ABC的外心.

答案:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)頂點(diǎn)所對(duì)的復(fù)數(shù)分別為Z1,Z2,Z3,復(fù)數(shù)Z滿足|Z-Z1|=|Z-Z2|=|Z-Z3|,則Z的對(duì)應(yīng)點(diǎn)是△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田模擬)已知函數(shù)f(x)=lnx+x2-mx.
(1)若m=3,求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若m=1,△ABC的三個(gè)頂點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在函數(shù)f(x)的圖象上,且x1<x2<x3,a、b、c分別為△ABC的內(nèi)角A、B、C所對(duì)的邊.求證:a2+c2<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aln(1+ex)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),且g(x)在x=1處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)證明:對(duì)(-∞,+∞)上任意兩個(gè)互異的實(shí)數(shù)x,y,都有f(
x+y
2
)<
f(x)+f(y)
2
;
(Ⅲ)已知△ABC的三個(gè)頂點(diǎn)A,B,C都在函數(shù)y=f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,求證△ABC是鈍角三角形.并問(wèn)它可能是等腰三角形嗎?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田模擬)已知函數(shù)f(x)=asinx-x+b(a>0,b>0).
(1)求證:函數(shù)f(x)在區(qū)間[0,a+b]內(nèi)至少有一個(gè)零點(diǎn);
(2)若函數(shù)f(x)在x=
π
3
處取得極值.
(i)不等式f(x)>sinx+cosx對(duì)任意x∈[0,
π
2
]
恒成立,求b的取值范圍;
(ii)設(shè)△ABC的三個(gè)頂點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在函數(shù)f(x)的圖象上,且-
π
3
x1x2x3
π
3
,求證:f(sin2A+sin2C)<f(sin2B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1處取得極值.
(1)求a的值;
(2)若對(duì)0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范圍;
(3)已知△ABC的三個(gè)頂點(diǎn)A,B,C都在函數(shù)f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,討論△ABC是否為鈍角三角形,是否為等腰三角形.并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案