在直角三角形ABC中,斜邊BC為10,以BC中點(diǎn)為圓心,作半徑為3的圓,分別交BC于P、Q兩點(diǎn),設(shè)L=|AP|2+|AQ|2+|PQ|2,試問L是否為定值?如果是定值,求出定值,反之說明理由.
分析:由題意可得|PQ|=6,根據(jù)直角三角形的性質(zhì)得到|OA|=
1
2
|BC|=5.然后分別在△AOP、△AOQ中利用余弦定理求出|AP|2、|AQ|2的表達(dá)式,由∠AOP+∠AOQ=180°利用誘導(dǎo)公式化簡,可得|AP|2+|AQ|2=2(OA2+OP2)=68,從而算出L=|AP|2+|AQ|2+|PQ|2=104,可得答案.
解答:解:根據(jù)題意,可得|OP|=|OQ|=3.
∵O為Rt△ABC的斜邊中點(diǎn),∴|OA|=
1
2
|BC|=5,
精英家教網(wǎng)在△AOP中,根據(jù)余弦定理,
可得|AP|2=|OA|2+|OP|2-2|OA|•|OP|cos∠AOP…①.
同理在△AOQ中,|AQ|2=|OA|2+|OQ|2-2|OA|•|OQ|cos∠AOQ…②.
∵∠AOP+∠AOQ=180°,可得cos∠AOP+cos∠AOQ=0
∴將①、②相加,可得|AP|2+|AQ|2=2(|OA|2+|OP|2)=2(25+9)=68
又∵|PQ|2=4|OP|2=36,
∴L=|AP|2+|AQ|2+|PQ|2=68+36=104,即L為定值.
點(diǎn)評:本題給出直角三角形中的圓,探求三角形APQ三邊的平方和是否為定值.著重考查了直角三角形的性質(zhì)和余弦定理等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,∠ACB=90°,AB=5,BC=4,AC=3,求三角形ABC繞AB邊旋轉(zhuǎn)一周所成幾何體的表面積及體積精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,AD是斜邊BC上的高,有很多大家熟悉的性質(zhì),例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“
1
|AD|2
=
1
|AB|2
+
1
|AC|2
”等,由此聯(lián)想,在三棱錐O-ABC中,若三條側(cè)棱OA,OB,OC兩兩互相垂直,可以推出哪些結(jié)論?至少寫出兩個結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,D是斜邊BC邊上的中點(diǎn),AC=8cm,BC=6cm,EC⊥平面ABC,EC=12cm,
求 EA,EB,ED的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角三角形ABC中,∠ACB=30°,∠B=90°,D為AC的中點(diǎn),E為BD的中點(diǎn),AE的延長線交BC于點(diǎn)F(如圖1). 將△ABD沿BD折起,二面角A-BD-C的大小記為θ(如圖2).
(Ⅰ)求證:面AEF⊥面BCD;面AEF⊥面BAD;
(Ⅱ)當(dāng)cosθ為何值時,AB⊥CD;
(Ⅲ)在(Ⅱ)的條件下,求FB與平面BAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濱州一模)在直角坐標(biāo)系xOy中,
i
j
,分別是與x軸、y軸正方向同向的單位向量,在直角三角形ABC中,若
AB
=
i
+3
j
,
AC
=2
i
+k
j
,則“k=1”是“∠C=
π
2
”的( 。

查看答案和解析>>

同步練習(xí)冊答案