【題目】為了更好地貫徹黨的五育并舉的教育方針,某市要對全市中小學(xué)生體能達(dá)標(biāo)情況進(jìn)行了解,決定通過隨機(jī)抽樣選擇幾個(gè)樣本校對學(xué)生進(jìn)行體能達(dá)標(biāo)測試,并規(guī)定測試成績低于60分為不合格,否則為合格,若樣本校學(xué)生不合格人數(shù)不超過其總?cè)藬?shù)的5%,則該樣本校體能達(dá)標(biāo)為合格.已知某樣本校共有1000名學(xué)生,現(xiàn)從中隨機(jī)抽取40名學(xué)生參加體能達(dá)標(biāo)測試,首先將這40名學(xué)生隨機(jī)分為甲、乙兩組,其中甲乙兩組學(xué)生人數(shù)的比為3:2,測試后,兩組各自的成績統(tǒng)計(jì)如下:甲組的平均成績?yōu)?/span>70,方差為16,乙組的平均成績?yōu)?/span>80,方差為36.

1)估計(jì)該樣本校學(xué)生體能測試的平均成績;

2)求該樣本校40名學(xué)生測試成績的標(biāo)準(zhǔn)差s

3)假設(shè)該樣本校體能達(dá)標(biāo)測試成績服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,利用估計(jì)值估計(jì)該樣本校學(xué)生體能達(dá)標(biāo)測試是否合格?

(注:1.本題所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù);2若隨機(jī)變量z服從正態(tài)分布,則,

【答案】174;(2.3)可估計(jì)該樣本校學(xué)生體能達(dá)標(biāo)測試合格.

【解析】

1)由甲乙兩組學(xué)生人數(shù)可求得總均分;

2)設(shè)第一組學(xué)生的測試成績分別為,第二組學(xué)生的測試成績分別為,由已知方差求得,結(jié)合(1)可得總方差;

3)由已知數(shù)據(jù)知,然后求出不合格的概率得不合格人數(shù),從而得結(jié)論.

解:(1)由題知,甲、乙兩組學(xué)生數(shù)分別為2416,

則這40名學(xué)生測試成績的平均分

故可估計(jì)該樣本校學(xué)生體能測試的平均成績?yōu)?/span>74,.

2)由變形得

設(shè)第一組學(xué)生的測試成績分別為

第二組學(xué)生的測試成績分別為,

則第一組的方差為

解得.

第二組的方差為

解得.

40名學(xué)生的方差為

,

所以.

綜上,標(biāo)準(zhǔn)差.

3)由,得的估計(jì)值為,的估計(jì)值

,

所以.

從而,在全校1000名學(xué)生中,不合格的有(人)

,

故可估計(jì)該樣本校學(xué)生體能達(dá)標(biāo)測試合格.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年,電商行業(yè)的蓬勃發(fā)展帶動了快遞業(yè)的迅速增長,快遞公司攬收價(jià)格一般是采用“首重+續(xù)重”的計(jì)價(jià)方式.首重是指最低的計(jì)費(fèi)重量,續(xù)重是指超過首重部分的計(jì)費(fèi)重量,不滿一公斤按一公斤計(jì)費(fèi).某快遞網(wǎng)點(diǎn)將快件的攬收價(jià)格定為首重(不超過一公斤)8元,續(xù)重2/公斤(例如,若一個(gè)快件的重量是0.6公斤,按8元計(jì)費(fèi);若一個(gè)快件的重量是1.4公斤,按元計(jì)費(fèi)).根據(jù)歷史數(shù)據(jù),得到該網(wǎng)點(diǎn)攬收快件重量的頻率分布直方圖如下圖所示

1)根據(jù)樣本估計(jì)總體的思想,將頻率視作概率,求該網(wǎng)點(diǎn)攬收快件的平均價(jià)格;

2)為了獲得更大的利潤,該網(wǎng)點(diǎn)對“一天中收發(fā)一件快遞的平均成本(單位:元)與當(dāng)天攬收的快遞件數(shù)(單位:百件)之間的關(guān)系”進(jìn)行調(diào)查研究,得到相關(guān)數(shù)據(jù)如下表:

每天攬收快遞件數(shù)(百件)

2

3

4

5

8

每件快遞的平均成本(元)

5.6

4.8

4.4

4.3

4.1

根據(jù)以上數(shù)據(jù),技術(shù)人員分別根據(jù)甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程:

方程甲:,方程乙:.

①為了評價(jià)兩種模型的擬合效果,根據(jù)上表數(shù)據(jù)和相應(yīng)回歸方程,將以下表格填寫完整(結(jié)果保留一位小數(shù)),分別計(jì)算模型甲與模型乙的殘差平方和,并依此判斷哪個(gè)模型的擬合效果更好(備注:稱為相應(yīng)于點(diǎn)的殘差,殘差平方和;

每天攬收快遞件數(shù)/百件

2

3

4

5

8

每天快遞的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

預(yù)報(bào)值

5.2

5.0

4.8

殘差

0.2

0.4

模型乙

預(yù)報(bào)值

5.5

4.8

4.5

預(yù)報(bào)值

0

0.1

②預(yù)計(jì)該網(wǎng)點(diǎn)今年625日(端午節(jié))一天可以攬收1000件快遞,試根據(jù)①中確定的擬合效果較好的回歸模型估計(jì)該網(wǎng)點(diǎn)當(dāng)天的總利潤(總利潤=(平均價(jià)格-平均成本)×總件數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動直線交拋物線AB兩點(diǎn).

1)若,證明直線過定點(diǎn),并求出該定點(diǎn);

2)點(diǎn)M的中點(diǎn),過點(diǎn)M作與y軸垂直的直線交拋物線C點(diǎn);點(diǎn)N的中點(diǎn),過點(diǎn)N作與y軸垂直的直線交拋物線于點(diǎn)P.設(shè)△的面積,△的面積為.

i)若過定點(diǎn),求使取最小值時(shí),直線的方程;

ii)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,E為線段PB的中點(diǎn),F為線段BC上的動點(diǎn).

1)求證:AE⊥平面PBC;

2)試確定點(diǎn)F的位置,使平面AEF與平面PCD所成的銳二面角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù),.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的圾坐標(biāo)方,且直線l與曲線C相交于A,B兩點(diǎn).

1)求曲線C的普通方程和l的直角坐標(biāo)方程;

2)若,點(diǎn)滿足,求此時(shí)r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高新產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,市場研究人員對該公司2019年下半年連續(xù)六個(gè)月的利潤進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)列表如下:

月份

7

8

9

10

11

12

月份代碼

1

2

3

4

5

6

月利潤(萬元)

110

130

160

150

200

210

1)請用相關(guān)系數(shù)說明月利潤y(單位:萬元)與月份代碼x之間的關(guān)系的強(qiáng)弱(結(jié)果保留兩位小數(shù)),求y關(guān)于x的線性回歸方程,并預(yù)測該公司20201月份的利潤;

2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,己知生產(chǎn)新型材料的乙企業(yè)對A、B兩種型號各100件新型材料進(jìn)行模擬測試,統(tǒng)計(jì)兩種新型材料使用壽命頻數(shù)如下表所示:

使用壽命

材料類型

1個(gè)月

2個(gè)月

3個(gè)月

4個(gè)月

總計(jì)

A

15

40

35

10

100

B

10

30

40

20

100

現(xiàn)有采購成本分別為10萬元/件和12萬元/件的AB兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個(gè)月,不同類型的新型材料損壞的時(shí)間各不相同,經(jīng)甲公司測算,平均每件新型材料每月可以帶來5萬元收入,不考慮除采購成本之外的其他成本,假設(shè)每件新型材料的使用壽命都是整數(shù)月,且以頻率估計(jì)每件新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每件新型材料產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款新型材料?

參考公式:相關(guān)系數(shù);

回歸直線方程為,其中,.

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的各項(xiàng)均為不等的正整數(shù),其前項(xiàng)和為,我們稱滿足條件“對任意的,均有”的數(shù)列為“好”數(shù)列.

(1)試分別判斷數(shù)列,是否為“好”數(shù)列,其中,,,并給出證明;

(2)已知數(shù)列為“好”數(shù)列.

① 若,求數(shù)列的通項(xiàng)公式;

② 若,且對任意給定正整數(shù)),有成等比數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,圓經(jīng)過橢圓的左,右焦點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線與橢圓交于點(diǎn),線段的中點(diǎn)為,的垂直平分線與軸和軸分別交于兩點(diǎn),是否存在實(shí)數(shù),使得的面積與為原點(diǎn))的面積相等?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,其圖象如圖所示.函數(shù)是定義域?yàn)?/span>的奇函數(shù),滿足,且當(dāng)時(shí),.給出下列三個(gè)結(jié)論:

;

②函數(shù)內(nèi)有且僅有個(gè)零點(diǎn);

③不等式的解集為

其中,正確結(jié)論的序號是________

查看答案和解析>>

同步練習(xí)冊答案