若{an}是等差數(shù)列,則有下列關(guān)系確定的數(shù)列{bn}也一定是等差數(shù)列的是( 。
分析:取an=n,可判定選項A、B、D的真假,然后利用等差數(shù)列的定義判定選項C即可.
解答:解:∵{an}是等差數(shù)列
∴an-an-1=d
當(dāng)an=n時,bn=an2=n2,數(shù)列{bn}不是等差數(shù)列
bn=an+n2=2n2,數(shù)列{bn}不是等差數(shù)列
bn-bn-1=an+an+1-(an-1+an)=2d,故數(shù)列{bn}也一定是等差數(shù)列
bn=nan=n3,數(shù)列{bn}不是等差數(shù)列
故選C.
點評:本題主要考查了等差數(shù)列的判定,以及利用列舉法判定真假,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=a(a>0).?dāng)?shù)列{bn}滿足bn=anan+1(n∈N*).
(1)若{an}是等差數(shù)列,且b3=12,求a的值及{an}的通項公式;
(2)若{an}是等比數(shù)列,求{bn}的前項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}是等差數(shù)列,首項 a1>0,a2011+a2012>0,a2011•a2012<0,則使前n項和Sn最大的自然數(shù)n是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}是等差數(shù)列,首項a1>0,a2013+a2014>0,a2013•a2014<0,則使數(shù)列{an}的前n項和Sn>0成立的最大自然數(shù)n是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)記數(shù)列{an}的前n項和為Sn,所有奇數(shù)項之和為S′,所有偶數(shù)項之和為S″.
(1)若{an}是等差數(shù)列,項數(shù)n為偶數(shù),首項a1=1,公差d=
3
2
,且S″-S′=15,求Sn;
(2)若無窮數(shù)列{an}滿足條件:①Sn+1=1-
3
5
Sn
(n∈N*),②S′=S″.求{an}的通項;
(3)若{an}是等差數(shù)列,首項a1>0,公差d∈N*,且S′=36,S″=27,請寫出所有滿足條件的數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案