已知函數(shù)f(x)=
2x(x<4)
f(x-1)(x≥4)
,則f(5)=
 
分析:此是分段函數(shù)求值,當(dāng)x≥4時(shí),所給表達(dá)式是一遞推關(guān)系,其步長(zhǎng)為1,故可由此關(guān)系逐步轉(zhuǎn)化求f(5)的值.
解答:解:∵當(dāng)x≥4時(shí),f(x)=f(x-1)
∴f(5)=f(4)=f(3)
而當(dāng)x<4時(shí),f(x)=2x
∴f(5)=f(3)=23=8
故答案為:8.
點(diǎn)評(píng):本題考點(diǎn)是分段函數(shù)求值,且在解析式中給出了一步長(zhǎng)為1的遞推關(guān)系,在解題時(shí)要根據(jù)函數(shù)中不同區(qū)間上的解析式求值.在用此遞推關(guān)系轉(zhuǎn)化時(shí),由于相關(guān)數(shù)的值的絕對(duì)值一般較大,轉(zhuǎn)化時(shí)要仔細(xì)推斷,免致不細(xì)心出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案