【題目】如圖,在平行四邊形中,,,為邊的中點,將沿直線翻折成,設(shè)為線段的中點.則在翻折過程中,給出如下結(jié)論:
①當不在平面內(nèi)時,平面;
②存在某個位置,使得;
③線段的長是定值;
④當三棱錐體積最大時,其外接球的表面積為.
其中,所有正確結(jié)論的序號是______.(請將所有正確結(jié)論的序號都填上)
【答案】①③④
【解析】
①取DC的中點N,連接NM、NB,;MN∥A1D,NB∥DE,所以面MNB∥面A1DE,所以MB∥面A1DE;
②用反證法,假設(shè)存在某個位置,使DE⊥A1C,在△CDE中,由勾股定理易知,CE⊥DE,再由線面垂直的判定定理可知,DE⊥面A1CE,所以DE⊥A1E,與已知相矛盾;
③由①可知,可得MN、NB和∠MNB均為定值,在△MNB中,由余弦定理可知,MB2=MN2+NB2﹣2MNNBcos∠MNB,所以線段BM的長是定值;
④當體積最大時,平面平面,可得平面,設(shè)外接球球心為,半徑為,根據(jù)球的性質(zhì)可知,即可求出半徑,計算球的表面積.
①取DC的中點N,連接NM、NB,如圖,
則MN∥A1D,NB∥DE,且MN∩NB=N,A1D∩DE=D,所以面MNB∥面A1DE,所以MB∥面A1DE,即①正確;
且MN==定值;NB∥DE,且NB=DE=定值,所以∠MNB=∠A1DE=定值,
②假設(shè)存在某個位置,使DE⊥A1C.由AB=2AD=2,∠BAD=60°可求得DE=1,,所以CE2+DE2=CD2,即CE⊥DE,因為A1C∩CE=C,所以DE⊥面A1CE,因為A1E面A1CE,所以DE⊥A1E,與已知相矛盾,即②錯誤;
③由①可知,MN∥A1D且MN==定值;NB∥DE,且NB=DE=定值,所以∠MNB=∠A1DE=定值,由余弦定理得,MB2=MN2+NB2﹣2MNNBcos∠MNB,所以BM的長為定值,即③正確;
④當平面平面時,三棱錐體積最大,此時因為,是平面與平面的交線,所以平面,設(shè)正三角形中心為,棱錐外接球球心為,半徑為,則,設(shè)與交于,連接,,如圖:
易知,,由題意可知為邊長為1的等邊三角形,,
則有,,
所以,故球的表面積為,即④正確.
故答案為:①③④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗,第一次檢測廠家的每件產(chǎn)品合格的概率為,如果合格,則可以出廠;如果不合格,則進行技術(shù)處理,處理后進行第二次檢測.每件產(chǎn)品的合格率為,如果合格,則可以出廠,不合格則當廢品回收.
求某件產(chǎn)品能出廠的概率;
若該產(chǎn)品的生產(chǎn)成本為元/件,出廠價格為元/件,每次檢測費為元/件,技術(shù)處理每次元/件,回收獲利元/件.假如每件產(chǎn)品是否合格相互獨立,記為任意一件產(chǎn)品所獲得的利潤,求隨機變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù).
(1)若,證明:;
(2)若時,都有,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著全球石油資源緊張、大氣污染日益嚴重和電池技術(shù)的提高,電動汽車已被世界公認為21世紀汽車工業(yè)改造和發(fā)展的主要方向.為了降低對大氣的污染和能源的消耗,某品牌汽車制造商研發(fā)了兩款電動汽車車型和車型,并在黃金周期間同時投放市場.為了了解這兩款車型在黃金周的銷售情況,制造商隨機調(diào)查了5家汽車店的銷量(單位:臺),得到下表:
店 | 甲 | 乙 | 丙 | 丁 | 戊 |
車型 | 6 | 6 | 13 | 8 | 11 |
車型 | 12 | 9 | 13 | 6 | 4 |
(1)若從甲、乙兩家店銷售出的電動汽車中分別各自隨機抽取1臺電動汽車作滿意度調(diào)查,求抽取的2臺電動汽車中至少有1臺是車型的概率;
(2)現(xiàn)從這5家汽車店中任選3家舉行促銷活動,用表示其中車型銷量超過車型銷量的店的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是軸下方(不含軸)一點,拋物線上存在不同的兩點、滿足,,其中為常數(shù),且、兩點均在上,弦的中點為.
(1)若點坐標為,時,求弦所在的直線方程;
(2)在(1)的條件下,如果過點的直線與拋物線只有一個交點,過點的直線與拋物線也只有一個交點,求證:若和的斜率都存在,則與的交點在直線上;
(3)若直線交拋物線于點,求證:線段與的比為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,為邊的中點,將沿直線翻折成,設(shè)為線段的中點.則在翻折過程中,給出如下結(jié)論:
①當不在平面內(nèi)時,平面;
②存在某個位置,使得;
③線段的長是定值;
④當三棱錐體積最大時,其外接球的表面積為.
其中,所有正確結(jié)論的序號是______.(請將所有正確結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標系中,曲線的方程為,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.若將曲線上的所有點的橫坐標縮小到原來的一半,縱坐標伸長到原來的倍,得曲線.
(1)寫出直線和曲線的直角坐標方程;
(2)設(shè)點, 直線與曲線的兩個交點分別為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司2019年3月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有,兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不相同,現(xiàn)對,兩種型號的新型材料對應(yīng)的產(chǎn)品各件進行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
使用壽命 材料類型 | 個月 | 個月 | 個月 | 個月 | 總計 |
如果你是甲公司的負責人,你會選擇采購哪款新型材料?
參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com