19.若數(shù)列{an}成等比數(shù)列,其公比為2,則$\frac{2{a}_{2}+{a}_{3}}{2{a}_{4}+{a}_{5}}$=$\frac{1}{4}$.

分析 利用等比數(shù)列的通項公式即可得出.

解答 解:∵數(shù)列{an}成等比數(shù)列,其公比為2,
則$\frac{2{a}_{2}+{a}_{3}}{2{a}_{4}+{a}_{5}}$=$\frac{{a}_{1}(2q+{q}^{2})}{{a}_{1}(2{q}^{3}+{q}^{4})}$=$\frac{1}{{q}^{2}}$=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點評 本題考查了等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.數(shù)列{an}中,a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.把區(qū)間[1,3]n等分,所得每個小區(qū)間的長度△x等于(  )
A.$\frac{1}{n}$B.$\frac{2}{n}$C.$\frac{1}{2n}$D.$\frac{3}{n}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和Sn,且滿足${S_{n+1}}={n^2}-n$,則a1=( 。
A.4B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(Ⅰ)求證:MB∥平面PDC;
(Ⅱ)求二面角M-PC-D的余弦值;
(Ⅲ)E為線段PC上一點,若直線DE與直線PM所成的角為60°,求PE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x),對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),當x>0時,f(x)<0,且$f(1)=-\frac{1}{2}$.
(Ⅰ) 求f(0),f(3)的值;
(Ⅱ) 當-8≤x≤10時,求函數(shù)f(x)的最大值和最小值;
(Ⅲ) 設函數(shù)g(x)=f(x2-m)-2f(|x|),判斷函數(shù)g(x)最多有幾個零點,并求出此時實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=sin$\frac{πx}{2}$(x∈R).任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t).
(Ⅰ)求函數(shù)f(x)的最小正周期及對稱軸方程
(Ⅱ)當t∈[-2,0]時,求函數(shù)g(t)的解析式
(Ⅲ)設函數(shù)h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中實數(shù)k為參數(shù),且滿足關于t的不等式$\sqrt{2}$k-5g(t)≤0有解.若對任意x1∈[4,+∞),存在x2∈(-∞,4],使得h(x2)=H(x1)成立,求實數(shù)k的取值范圍
參考公式:sinα-cosα=$\sqrt{2}$sin(α-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列命題中正確的個數(shù)是( 。
①命題“?x∈(1,+∞),2x>2”的否定是“?x∉(1,+∞),2x>2”;
②“a=2”是“|a|=2”的必要不充分條件;
③若命題p為真,命題¬q為真,則命題p∧q為真;
④命題“在△ABC中,若$sinA<\frac{1}{2}$,則$A<\frac{π}{6}$”的逆否命題為真命題.
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案