12.二進(jìn)制數(shù)11111轉(zhuǎn)換成十進(jìn)制數(shù)是31 .

分析 根據(jù)兩個不同的進(jìn)位制之間的關(guān)系,寫出把二進(jìn)制轉(zhuǎn)化成十進(jìn)制以后的表示式,即讓二進(jìn)制的個位乘以20,向前和向后只有2的指數(shù)變化,做法類似,最后相加得到結(jié)果.

解答 解:由題意知二進(jìn)制數(shù)11111對應(yīng)的十進(jìn)制是
1×24+1×23+1×22+1×21+1×20
=16+8+4+2+1
=31.
故答案為:31.

點(diǎn)評 本題考查進(jìn)位制之間的關(guān)系,本題解題的關(guān)鍵是理解兩者之間的轉(zhuǎn)化到依據(jù),本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.關(guān)于下列命題:
①若函數(shù)f(3x+1)的定義域?yàn)椋?∞,0),則函數(shù)f(x)的定義域?yàn)椋?∞,1);
②若函數(shù)f(x)的定義域?yàn)椋?∞,1),函數(shù)f($\frac{1}{x}$)的定義域?yàn)椋?∞,1);
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2};
④若函數(shù)y=$\frac{1}{x}$的定義域是{x|x>2},則它的值域是{y|y≤$\frac{1}{2}$};
其中不正確的命題的序號是②③④.
( 注:把你認(rèn)為不正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算下列各式的值 (其中,e為自然對數(shù)的底數(shù)):
(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{({π+e})^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$;       
(2)$2lg5+lg4+ln\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=24,S11=0
(Ⅰ)求數(shù)列{an}的前n項(xiàng)和Sn;
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{n}$,求數(shù)列{bn}前n項(xiàng)和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若xlog23=1,則3x+9-x的值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的為( 。
A.y=3xB.y=2x(-1≤x<1)
C.$y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$D.y=2x-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5]
(1)當(dāng)a=-1時,求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù)
(3)已知函數(shù)y=x+$\frac{t}{x}$有如下性質(zhì):
如果常數(shù)t>0,那么該函數(shù)(0,$\sqrt{t}$]上是減函數(shù),在[$\sqrt{t}$,+∞)上是增函數(shù).
利用上述性質(zhì),直接寫出函數(shù)g(x)=$\frac{f(x)}{x}$,x∈(0,5]的單調(diào)區(qū)間,并求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知{an}是首項(xiàng)為1,公差為2的等差數(shù)列,Sn表示{an}的前n項(xiàng)和.
(Ⅰ)求an及Sn;
(Ⅱ)設(shè){bn}是首項(xiàng)為2的等比數(shù)列,公比q滿足q2-(a4-3)q+S2=0.求{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案