已知f(x+y)=f(x)f(y)對任意的非負(fù)實(shí)數(shù)x,y都成立,且f(1)=4,則
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2010)
f(2009)
=
8040
8040
分析:在f(x+y)=f(x)f(y)中,令y=1可得,f(x+1)=f(x)f(1),進(jìn)而可得
f(x+1)
f(x)
=
f(x)•f(1)
f(x)
=f(1)=4

將其代入
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2010)
f(2009)
中,可得答案.
解答:解:根據(jù)題意,在f(x+y)=f(x)f(y)中,
令y=1可得,f(x+1)=f(x)f(1),
f(x+1)
f(x)
=
f(x)•f(1)
f(x)
=f(1)=4
,
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2010)
f(2009)
=2010×4=8040
;
故答案為8040.
點(diǎn)評(píng):本題考查抽象函數(shù)的運(yùn)用,解決這類問題一般用特殊值法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+y)=f(x)•f(y)對任意的實(shí)數(shù)x、y都成立,且f(1)=2,則
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2005)
f(2004)
+
f(2006)
f(2005)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+y)=f(x)f(y)對任意的非負(fù)實(shí)數(shù)x,y都成立,且f(1)=1,則
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2013)
f(2012)
=
2013
2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+y)=f(x)-f(y)對于任意實(shí)數(shù)x都成立,在區(qū)間[0,+∞)單調(diào)遞增,則滿足f(2x-1)<f(
1
3
)
的x取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x+y)=f(x)•f(y)對任意的實(shí)數(shù)x、y都成立,且f(1)=2,則
f(1)
f(0)
+
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2005)
f(2004)
+
f(2006)
f(2005)
=______.

查看答案和解析>>

同步練習(xí)冊答案