【題目】下列四個(gè)命題:
①函數(shù)的最大值為1;
②“若,則”的逆命題為真命題;
③若為銳角三角形,則有;
④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中所有正確命題的序號(hào)為____________.
【答案】③④
【解析】
利用二倍角公式化簡(jiǎn)函數(shù),可得,根據(jù)正弦型函數(shù)值域可知①錯(cuò)誤;確定原命題的逆命題后,通過可知逆命題為假,②錯(cuò)誤;利用誘導(dǎo)公式和角的范圍可證得結(jié)論,③正確;分類討論去掉函數(shù)中的絕對(duì)值符號(hào),根據(jù)二次函數(shù)的性質(zhì)可確定函數(shù)的單調(diào)性,從而得到滿足題意的范圍,進(jìn)而說明充要條件成立,④正確.
① ,①錯(cuò)誤
②“若,則”的逆命題為:“若,則”
若,可知,則其逆命題為假命題,②錯(cuò)誤
③為銳角三角形 ,,
且
同理可得:,
,③正確
④令,解得:,
當(dāng)時(shí),對(duì)恒成立
對(duì)稱軸為 在上單調(diào)遞增,充分條件成立
當(dāng)時(shí),,此時(shí)在上單調(diào)遞減,不滿足題意
“”是“在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件,④正確
本題正確結(jié)果:③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正整數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若恒成立,求的取值范圍;
(3)已知,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,河北等8省公布了高考改革綜合方案將采取“”模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門.為了更好進(jìn)行生涯規(guī)劃,張明同學(xué)對(duì)高一一年來的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.
(1)若張明同學(xué)隨機(jī)選擇3門功課,求他選到物理政治兩門功課的概率;
(2)試根據(jù)莖葉圖分析張明同學(xué)應(yīng)在物理和歷史中選擇哪個(gè)學(xué)科?并闡述理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長(zhǎng)為1的正方體中,下列數(shù)學(xué)命題不正確的是( )
A.平面平面,且兩平面的距離為
B.點(diǎn)在線段上運(yùn)動(dòng),則四面體的體積不變
C.與所有12條棱都相切的球的體積為
D.是正方體的內(nèi)切球的球面上任意一點(diǎn),是外接圓的圓周上任意一點(diǎn),則的最小值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相交于不同的兩點(diǎn)A,B.
(Ⅰ)若α=,求線段AB中點(diǎn)M的坐標(biāo);
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線和拋物線相交于不同兩點(diǎn)A,B.
(I)求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F.以MF為直徑的圓與直線l相交于另一點(diǎn)N,且滿足,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(x,y)滿足
(1)求點(diǎn)M的軌跡E的方程;
(2)設(shè)過點(diǎn)N(﹣1,0)的直線l與曲線E交于A,B兩點(diǎn),若△OAB的面積為(O為坐標(biāo)原點(diǎn)).求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四名同學(xué)組成一個(gè)4100米接力隊(duì),老師要安排他們四人的出場(chǎng)順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒.老師聽了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場(chǎng)順序中跑第三棒的人是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com