13.設(shè)$\frac{1}{2}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a<1,那么( 。
A.1<b<aB.1<a<bC.0<a<b<1D.0<b<a<1

分析 利用指數(shù)函數(shù)的單調(diào)性即可判斷.

解答 解:由$\frac{1}{2}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a<1,
可得$(\frac{1}{2})^{1}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a<$(\frac{1}{2})^{0}$,
根據(jù)指數(shù)函數(shù)的單調(diào)性,底數(shù)為$\frac{1}{2}$,是減函數(shù),
∴0<a<b<1.
故選:C.

點評 本題考查了指數(shù)的化解和單調(diào)性的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.《中華人民共和國個人所得稅法》規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額.此項稅款按下表累計計算:
全月應(yīng)納稅所得額稅率%
不超過1500元的部分3%
超過1500元至4500元的部分10%
超過4500元至9000元的部分20%
某人一月份應(yīng)交納此項稅款300元,則他當(dāng)月工資、薪金所得是7550元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若A=(x+3)(x+7),B=(x+4)(x+6),則A、B的大小關(guān)系為( 。
A.A<BB.A=BC.A>BD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C:x2+y2+2x+8y-8=0.
(1)判斷圓C與圓D:x2+y2-4x-4y-1=0的位置關(guān)系,并說明理由;
(2)若圓C關(guān)于過點P(6,8)的直線l對稱,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點F是拋物線y2=4x的焦點,M、N是該拋物線上的兩點,且|MF|+|NF|=6,則線段MN的中點到y(tǒng)軸的距離為( 。
A.$\frac{5}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知p:“?x∈[1,2],x2-a≥0”,q:“?x∈R,x2+2ax+2-a=0”.若命題p∧q是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線y2=2px(p>0)的焦點F(1,0),動點M在拋物線上.
(1)寫出拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;
(2)若定點A(4,3),求|MF|+|MA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在三棱柱ABC-A1B1C1中,BB1⊥平面A1B1C1,AC=CB=CC1=2,∠ACB=90°,D、E分別是A1B1、CC1的中點.
(1)求證:C1D∥平面A1BE;
(2)求直線BC1與平面A1BE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知 f(x)=$\frac{lnx}{x}$,其中e 為自然對數(shù)的底數(shù),則( 。
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(e)>f(2)>f(3)D.f(e)>f(3)>f(2)

查看答案和解析>>

同步練習(xí)冊答案