已知函數(shù).

(1) 當時,求函數(shù)的單調(diào)區(qū)間和極值;

(2) 若上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

【解析】本試題考查了導數(shù)在研究函數(shù)中的運用。利用導數(shù)判定函數(shù)的單調(diào)性和求解函數(shù)的極值,以及運用逆向思維,求解參數(shù)取值范圍的問題。

 

【答案】

(1) 易知,函數(shù)的定義域為.

時,.

x變化時,的值的變化情況如下表:

x

(0,1)

1

(1,+∞)

-

0

+

遞減

極小值

遞增

由上表可知,函數(shù)的單調(diào)遞減區(qū)間是(0,1)、單調(diào)遞增區(qū)間是(1,+∞)、

極小值是   ( 5 分 )

(2) 由,得.

①若函數(shù) 為上單調(diào)增函數(shù),  則上恒成立,即不等式上恒成立.  也即上恒成立.又上為減函數(shù),.  所以.

 ② 若函數(shù) 為上單調(diào)減函數(shù),  則上恒成立,即上恒成立.又上為減函數(shù),不存在最小值.  所以不成立.

綜上

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1+sinx3+cosx
,則該函數(shù)的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1-x
2x2-3x-2
的定義域為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)(x-1)f(
x+1x-1
)+f(x)=x
,其中x≠1,求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•崇明縣一模)已知函數(shù)y=-
1-x2
(-1≤x≤0)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•黃浦區(qū)一模)已知函數(shù)y=
1+bx
ax+1
(a>0,x≠-
1
a
)
的圖象關(guān)于直線y=x對稱.
(1)求實數(shù)b的值;
(2)設A、B是函數(shù)圖象上兩個不同的定點,記向量
e1
=
AB
,
e2
=(1,0)
,試證明對于函數(shù)圖象所在的平面里任一向量
c
,都存在唯一的實數(shù)λ1、λ2,使得
c
=λ1
e1
+λ2
e2
成立.

查看答案和解析>>

同步練習冊答案