18、如圖,在四棱錐P-ABCD中,M,N分別是AB,PC的中點(diǎn),若ABCD是平行四邊形.求證:MN∥平面PAD.
分析:欲證MN∥平面PAD,根據(jù)直線(xiàn)與平面平行的判定定理可知只需證MN與平面PAD內(nèi)一直線(xiàn)平行,取PD的中點(diǎn)E,連接AE,EN
,根據(jù)平行四邊形可知MN∥AE,而MN?平面PAD,AE?平面PAD,滿(mǎn)足定理所需條件.
解答:證明:取PD的中點(diǎn)E,連接AE,EN
因?yàn)镋N∥AM,EN=AM
所以AMNE為平行四邊形,則MN∥AE
而MN?平面PAD,AE?平面PAD
∴MN∥平面PAD.
點(diǎn)評(píng):本題主要考查了直線(xiàn)與平面平行的判定,判斷或證明線(xiàn)面平行的常用方法有:①利用線(xiàn)面平行的定義(無(wú)公共點(diǎn));②利用線(xiàn)面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性質(zhì)定理(α∥β,a?α?a∥β);④利用面面平行的性質(zhì)(α∥β,a?α,a?,a∥α??a∥β).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案