把下面的符號語言改寫成文字語言的形式,并畫出圖形。若直線平面,直線,則平面
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖4平面四邊形ABCD中,AB=AD=,BC=CD=BD,設.
(1)將四邊形ABCD的面積S表示為的函數(shù);
(2)求四邊形ABCD面積S的最大值及此時值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.
(1)設N為EF上一點,當時,有DN ∥平面AEM,求 的值;
(2)試探究點M的位置,使平面AME⊥平面AEF。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)
(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。
(3)設棱臺DEF-ABC的體積為V=, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側棱與底面兩條棱所成的角均為60°? 若存在,請具體構造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,在平面四邊形中,是正三角形,,.
(Ⅰ)將四邊形的面積表示成關于的函數(shù);
(Ⅱ)求的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖1,在三棱錐P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示.
(1) 證明:A.D⊥平面PBC;
(2) 求三棱錐D-A.BC的體積;
(3) 在∠A.CB的平分線上確定一點Q,使得PQ∥平面A.BD,并求此時PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com