【題目】已知曲線上的任意一點(diǎn)到兩定點(diǎn)、距離之和為,直線交曲線于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求曲線的方程;
(2)若不過點(diǎn)且不平行于坐標(biāo)軸,記線段的中點(diǎn)為,求證:直線的斜率與的斜率的乘積為定值;
(3)若直線過點(diǎn),求面積的最大值,以及取最大值時(shí)直線的方程.
【答案】(1)(2)證明見解析;(3)或
【解析】
(1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.
(2)設(shè)直線,設(shè),聯(lián)立直線方程與橢圓方程,通過韋達(dá)定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.
(3)設(shè)直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關(guān)系,利用換元和基本不等式求最值.
(1)由題意知曲線是以原點(diǎn)為中心,長軸在軸上的橢圓,
設(shè)其標(biāo)準(zhǔn)方程為,則有,
所以,∴ .
(2)證明:設(shè)直線的方程為,
設(shè)
則由 可得,即
∴,∴ ,
,
,
∴直線的斜率與 的斜率的乘積=為定值
(3)點(diǎn),
由 可得,
,解得
∴
設(shè)
當(dāng)時(shí),取得最大值.
此時(shí),即
所以直線方程是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,該幾何體由半圓柱體與直三棱柱構(gòu)成,半圓柱體底面直徑,,,D為半圓弧的中點(diǎn),若異面直線BD和所成角的大小為.
(1)證明:平面;
(2)求該幾何體的表面積和體積;
(3)求點(diǎn)D到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,底面是邊長為的菱形,,是等邊三角形,為的中點(diǎn),.
(1)求證:;
(2)若在線段上,且,能否在棱上找到一點(diǎn),使平面平面?若存在,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個(gè)結(jié)論:
①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號(hào)是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年11月15日,我市召開全市創(chuàng)建全國文明城市動(dòng)員大會(huì),會(huì)議向全市人民發(fā)出動(dòng)員令,吹響了集結(jié)號(hào).為了了解哪些人更關(guān)注此活動(dòng),某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在和內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計(jì)“青少年人”與“中老年人”的人數(shù)之比為.
(1)求圖中的值,若以每個(gè)小區(qū)間的中點(diǎn)值代替該區(qū)間的平均值,估計(jì)這100人年齡的平均值;
(2)若“青少年人”中有15人關(guān)注此活動(dòng),根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計(jì)結(jié)果,問能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注此活動(dòng)?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | 15 | ||
中老年人 | |||
合計(jì) | 50 | 50 | 100 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓單位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到
若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( 。
A. 某校高三有8個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班人數(shù)都超過50人
B. 由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)
C. 平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分
D. 在數(shù)列中,,可得,由此歸納出的通項(xiàng)公式
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com