=   
【答案】分析:利用等比數(shù)列求和,求出和后,然后求出表達(dá)式的極限.
解答:解:因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024183340234132153/SYS201310241833402341321003_DA/0.png">==;
所以==2;
故答案為:2.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查數(shù)列求和的方法,數(shù)列的極限的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(8)(解析版) 題型:解答題

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為且過點(diǎn)(4,-
(Ⅰ)求雙曲線方程;
(Ⅱ)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
(Ⅲ)由(Ⅱ)的條件,求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年湖北省武漢市高三四月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( )
A.至少有1個(gè)白球;都是白球
B.至少有1個(gè)白球;至少有1個(gè)紅球
C.恰有1個(gè)白球;恰有2個(gè)白球
D.至少有一個(gè)白球;都是紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

若一個(gè)無窮等比數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=,則首項(xiàng)a1取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市松江區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

如果正數(shù)a、b、c、d滿足a+b=cd=4,則下列各式恒成立的是( )
A.a(chǎn)b<c+d
B.a(chǎn)b≤c+d
C.a(chǎn)b>c+d
D.a(chǎn)b≥c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市松江區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

的展開式的各項(xiàng)中任取一項(xiàng),若其系數(shù)為奇數(shù)時(shí)得2分,其系數(shù)為偶數(shù)時(shí)得0分,現(xiàn)從中隨機(jī)取一項(xiàng),則其得分的數(shù)學(xué)期望值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(8)(解析版) 題型:選擇題

在直二面角α-l-β中,A∈α,B∈β,A,B都不在l上,AB與α所成角為x,AB與β所成角為y,AB與l所成角為z,則cos2x+cos2y+sin2z的值為( )
A.
B.2
C.3
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市閘北區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知A、B、C的坐標(biāo)分別為A(4,0),B(0,4),C(3cosα,3sinα).
(1)若α∈(-π,0),且||=||,求角α的大。
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市八校高三聯(lián)考數(shù)學(xué)試卷(松江二中、青浦、七寶、育才、市二、行知、位育)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案