15.已知球O是棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的內(nèi)切球,則以B1為頂點(diǎn),以平面ACD1被球O所截得的圓為底面的圓錐的全面積為$\frac{2π}{3}$.(圓錐全面積S=πr(l+r),其中r為圓錐的底面半徑,l為母線長(zhǎng))

分析 根據(jù)正方體和球的結(jié)構(gòu)特征,求得球O被平面ACD1所截得的圓的半徑r,再通過(guò)利用球的性質(zhì)求出O到平面ACD1的距離d,進(jìn)而求出圓錐的高,再由勾股定理求出圓錐的母線,最后利用圓錐的表面積求解即可.

解答 解:如圖,O為球心,也是正方體的中心,
設(shè)球O被平面ACD1所截得的圓的半徑為r,AC中點(diǎn)為M,
則r=$\frac{1}{3}$D1M=$\frac{\sqrt{6}}{6}$,
球的半徑R=$\frac{1}{2}$,
則O到平面ACD1的距離d=$\sqrt{{R}^{2}-{r}^{2}}$=$\frac{\sqrt{3}}{6}$,
則圓錐的高h(yuǎn)=$\frac{\sqrt{3}}{6}+\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}}{3}$,
故圓錐的母線長(zhǎng)l=$\frac{\sqrt{6}}{2}$
故圓錐的表面積為:πr(r+h)=$\frac{\sqrt{6}}{6}$($\frac{\sqrt{6}}{6}+\frac{\sqrt{6}}{2}$)π=$\frac{2π}{3}$,
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查了正方體和它的內(nèi)接球的結(jié)構(gòu)特征、圓錐的體積,關(guān)鍵是想象出截面圖的形狀,考查了空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax+$\frac{x}$,且f(x)+f(${\frac{1}{x}}$)=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經(jīng)過(guò)點(diǎn)(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f($\frac{a^2}{2}$)>0;
(3)當(dāng)f(x)存在三個(gè)不同的零點(diǎn)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域是[-3,3],它們?cè)趚∈[0,3]上的圖象如圖所示,則不等式f(x)•g(x)≥0的解集是[-3,-$\frac{3}{2}$]∪[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且a=5,b=8,C=60°,則$\overrightarrow{BC}$•$\overrightarrow{CA}$的值為-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)$f(x)={\{\;}_{{log}_{3}({x}^{2}-1),x≥2.}^{{2}^{x-1},x<2,}$,則f(f(2))的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),若$f(x)+g(x)={log_2}(1+{2^x})$,則f(2)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知直線2x-y+1=0的傾斜角為θ,則sin2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)滿足:(1)定義域?yàn)镽;(2)對(duì)任意的x∈R,有f(x+2)=2f(x);(3)當(dāng)x∈[-1,1]時(shí),$f(x)=cos\frac{π}{2}x$,若函數(shù)$g(x)=\left\{\begin{array}{l}{e^x},x≤0\\ lnx,x>0\end{array}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-5,5]上零點(diǎn)的個(gè)數(shù)是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C:y2=4x,過(guò)點(diǎn)A(-1,0)的直線交拋物線C于P(x1,y1),Q(x2,y2)兩點(diǎn),設(shè)$\overrightarrow{AP}=λ\overrightarrow{AQ}$.
(Ⅰ)試求x1,x2的值(用λ表示);
(Ⅱ)若λ∈[$\frac{1}{3}$,$\frac{1}{2}$],求當(dāng)|PQ|最大時(shí),直線PQ的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案