【題目】已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域?yàn)閇-1,1],且|f(x)|的最大值為M.

(1)證明:|1+b|≤M;

(2)證明:M≥.

【答案】見解析

【解析】證明:(1)∵M(jìn)≥|f(-1)|=|1-a+b|, M≥|f(1)|=|1+a+b|,

∴2M≥|1-a+b|+|1+a+b|≥|(1-a+b)+(1+a+b)|=2|1+b|,

∴M≥|1+b|.

(2)依題意,M≥|f(-1)|,M≥|f(0)|,M≥|f(1)|.

又|f(-1)|=|1-a+b|,|f(1)|=|1+a+b|,|f(0)|=|b|.

∴4M≥|f(-1)|+2|f(0)|+|f(1)|

=|1-a+b|+2|b|+|1+a+b|

≥|(1-a+b)-2b+(1+a+b)|=2.

∴M≥.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)當(dāng)時(shí), 為增函數(shù),求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù),若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln x+ (a∈R).

(1)當(dāng)a=1時(shí),求f(x)在x∈[1,+∞)內(nèi)的最小值;

(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

(3)求證ln(n+1)> +…+ (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , .

(1)當(dāng)時(shí),求的極值;

(2)令,求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,底面是矩形,且, ,若的中點(diǎn),且

)求證: 平面;

)線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各選項(xiàng)中,一定符合上述指標(biāo)的是( )

平均數(shù)≤3;標(biāo)準(zhǔn)差S≤2;平均數(shù)≤3且標(biāo)準(zhǔn)差S≤2;平均數(shù)≤3且極差小于或等于2;眾數(shù)等于1且極差小于或等于1.

A.①② B.③④

C.③④⑤ D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市出租車的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價(jià)8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85(元/km))

(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);

(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?

(現(xiàn)實(shí)中要計(jì)等待時(shí)間且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x-3|-|x+1|,x∈R.

(1)解不等式f(x)<-1;

(2)設(shè)函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案