設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a5-1)3+2011(a5-1)=1,(a2007-1)3+2011(a2007-1)=-1,則下列結(jié)論正確的是( )
A.S2011=2011,a2007<a5
B.S2011=2011,a2007>a5
C.S2011=-2011,a2007≤a5
D.S2011=-2011,a2007≥a5
【答案】
分析:令f(x)=x
3+2011x-1,,由f′(x)=3x
2+2011>0可得f(x)在R上單調(diào)遞增且連續(xù)的函數(shù),結(jié)合零點(diǎn)判定及f(0),f(1)的符號(hào)可知函數(shù)f(x)=x
3+2011x-1只有唯一的零點(diǎn)x
∈(0,1)從而可得a
5-1,的符號(hào),同理可得a
2007-1的符號(hào),由已知兩式相加可得,(a
5+a
2007-2)[(a
5-1)
2+(a
2007-1)
2-(a
5-1)(a
2007-1)+2011]=0,從而有a
5+a
2007-2=0,由等差數(shù)列的性質(zhì)可得a
1+a
2011=a
5+a
2007=2,代入等差數(shù)列的求和公式
可求
解答:解:令f(x)=x
3+2011x-1,g(x)=x
3+2011x+1
f′(x)=3x
2+2011>0
f(x)在R上單調(diào)遞增且連續(xù)的函數(shù)
f(0)=-1<0,f(1)=2011>0
函數(shù)f(x)=x
3+2011x-1只有唯一的零點(diǎn)x
∈(0,1)
從而可得0<a
5-1<1,1<a
5<2,-1<a
2007<0∴a
2007<a
5∵(a
5-1)
3+2011(a
5-1)=1,(a
2007-1)
3+2011(a
2007-1)=-1
兩式相加整理可得,(a
5+a
2007-2)[(a
5-1)
2+(a
2007-1)
2-(a
5-1)(a
2007-1)+2011]=0
由0<a
5-1<1,-1<a
2007-1<0可得(a
5-1)
2+(a
2007-1)
2-(a
5-1)(a
2007-1)+2011>0
∴a
5+a
2007-2=0
由等差數(shù)列的性質(zhì)可得,a
1+a
2011=a
5+a
2007=2
∴
=2011
故選:A
點(diǎn)評(píng):本題主要考查了利用函數(shù)的導(dǎo)數(shù)及單調(diào)性、由函數(shù)的性質(zhì)判定零點(diǎn)的范圍,等差數(shù)列性質(zhì)(若m+n=p+q,則a
m+a
n=a
p+a
q)的應(yīng)用及求和公式
應(yīng)用,本題是一道綜合性非常好的試題,知識(shí)的應(yīng)用也比較靈活.考試要注意體會(huì)應(yīng)用.