分析 (1)利用三角形內(nèi)角和定理以及和與差公式計(jì)算即可;
(2)利用正弦定理計(jì)算即可;
解答 解:(1)在△ABC中中,A+B+C=π.
由cosB=$\frac{\sqrt{3}}{3}$,
可得:sinB=$\frac{\sqrt{6}}{3}$,
∵sin(A+B)=sinC=$\frac{\sqrt{6}}{9}$,
sinB=$\frac{\sqrt{6}}{3}$>sinC=$\frac{\sqrt{6}}{9}$,C為銳角,
∴cosC=$\frac{5\sqrt{3}}{9}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{2\sqrt{2}}{3}$.
(2)由正弦定理:$\frac{a}{sinA}=\frac{c}{sinC}$,
可得a=$\frac{csinA}{sinC}$=$2\sqrt{3}c$,
又ac=2$\sqrt{3}$.
∴c=1.
點(diǎn)評(píng) 本題考查了正弦定理的運(yùn)用和三角形內(nèi)角和定理以及和與差公式計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{9}{8}$ | C. | -$\frac{7}{8}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,-3} | B. | {1,0} | C. | {1,3} | D. | {1,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則$\overrightarrow a⊥\overrightarrow b$ | |
B. | 若a,b,c為實(shí)數(shù),且a<b<0,則$\frac{a}<\frac{a}$ | |
C. | 已知m,n是空間兩條不同的直線,α,β,γ是空間三個(gè)不同的平面,若α∩γ=m,β∩γ=n,m∥n則α∥β | |
D. | 已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,若A1B2=A2B1,則l1∥l2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\{α|α=2kπ-\frac{π}{3},k∈Z\}$ | B. | $\{α|α=2kπ+\frac{2π}{3},k∈Z\}$ | C. | $\{α|α=kπ-\frac{2π}{3},k∈Z\}$ | D. | $\{α|α=kπ-\frac{π}{3},k∈Z\}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com