已知函數f(x)=ex-ln(x+m).
(1)設x=0是f(x)的極值點,求m,并討論f(x)的單調性;
(2)當m≤2時,證明f(x)>0.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ln x+-1.
(1)求函數f(x)的單調區(qū)間;
(2)設m∈R,對任意的a∈(-1,1),總存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x3+ax2+bx.
(1)若a=2b,試問函數f(x)能否在x=-1處取到極值?若有可能,求出實數a,b的值;否則說明理由.
(2)若函數f(x)在區(qū)間(-1,2),(2,3)內各有一個極值點,試求w=a-4b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數f(x)=lnx-ax,g(x)=ex-ax,其中a為實數.
(1)若f(x)在(1,+∞)上是單調減函數,且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(-1,+∞)上是單調增函數,試求f(x)的零點個數,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ln(x+1)-x2-x.
(1)若關于x的方程f(x)=-x+b在區(qū)間[0,2]上恰有兩個不同的實數根,求實數b的取值范圍;
(2)證明:對任意的正整數n,不等式2+++…+ >ln(n+1)都成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設F(x)=若P是曲線y=F(x)上異于原點O的任意一點,在曲線y=F(x)上總存在另一點Q,使得△POQ中的∠POQ為鈍角,且PQ的中點在y軸上,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數的導函數為,的圖象在點,處的切線方程為,且,直線是函數的圖象的一條切線.
(1)求函數的解析式及的值;
(2)若對于任意,恒成立,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com