設(shè)集合S={A,A1,A2,A3,A4,A5},在S上定義運(yùn)算“⊕”為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(x⊕x)⊕A2=A的x(x∈S)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
【答案】分析:本題為信息題,學(xué)生要讀懂題意,運(yùn)用所給信息式解決問題,對于本題來說,可用逐個(gè)驗(yàn)證法
解答:解:當(dāng)x=A時(shí),(x⊕x)⊕A2=(A⊕A)⊕A2=A⊕A2=A2≠A
當(dāng)x=A1時(shí),(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A
當(dāng)x=A2時(shí),(x⊕x)⊕A2=(A2⊕A2)⊕A2=A⊕A2=A2
當(dāng)x=A3時(shí),(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A=A
當(dāng)x=A4時(shí),(x⊕x)⊕A2=(A4⊕A4)⊕A2=A⊕A2=A2≠A1
當(dāng)x=A5時(shí),(x⊕x)⊕A2=(A5⊕A5)⊕A2=A2⊕A2=A
則滿足關(guān)系式(x⊕x)⊕A2=A的x(x∈S)的個(gè)數(shù)為:3個(gè).
故選C.
點(diǎn)評:本題考查學(xué)生的信息接收能力及應(yīng)用能力,對提高學(xué)生的思維能力很有好處
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省樂山市高一(上)第一次段考數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)集合S={A,A1,A2,A3},在S上定義運(yùn)算⊕為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3.則滿足關(guān)系式(x⊕x)⊕A2=A的x(x∈S)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省聊城市紫陽中學(xué)高三(上)第三次調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)集合S={A,A1,A2,A3},在S上定義運(yùn)算⊕為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3.則滿足關(guān)系式(x⊕x)⊕A2=A的x(x∈S)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市宜興市丁蜀高級中學(xué)高三數(shù)學(xué)限時(shí)訓(xùn)練(1)(解析版) 題型:填空題

設(shè)集合{S=A,A1,A2,A3,A4,A5},在S上定義運(yùn)算“⊕”為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(x⊕x)⊕A2=A的x(x∈S)的個(gè)數(shù)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省龍巖市一級達(dá)標(biāo)學(xué)校聯(lián)盟高中高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)集合S={A,A1,A2,A3,A4},在S上定義運(yùn)算⊙為:Ai⊙Aj=Ak,其中k=|i-j|,i,j=0,1,2,3,4.那么滿足條件(Ai⊙Aj)⊙A2=A1(Ai,Aj∈S)的有序數(shù)對(i,j)共有( )
A.12個(gè)
B.8個(gè)
C.6個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年陜西省高考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)集合S={A,A1,A2,A3,A4,A5},在S上定義運(yùn)算“⊕”為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(x⊕x)⊕A2=A的x(x∈S)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案