等差數(shù)列{an},{bn}的前n項各分別為Sn,Tn
Sn
Tn
=
3n-1
2n+3
,則
a9
b9
=
50
37
50
37
分析:本題考查的知識點是等差數(shù)列的性質(zhì)及等差數(shù)列的前n項和,由等差數(shù)列中S2n-1=(2n-1)•an,我們可得a9=
s17
17
,b9=
T17
17
,代入
Sn
Tn
=
3n-1
2n+3
即可求解;
解答:解:等差數(shù)列中S2n-1=(2n-1)•an,∵
Sn
Tn
=
3n-1
2n+3

a9
b9
=
S17
17
T17
17
=
S17
T17
=
3×17-1
2×17+3
=
50
37

故答案為:
50
37
;
點評:在等差數(shù)列中,S2n-1=(2n-1)•an,即中間項的值,等于所有項值的平均數(shù),這是等差數(shù)列常用性質(zhì)之一,希望大家牢固掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項和,S7=3(a2+a12),則
a7
a4
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},其中a1=
13
a2+a5=4,an=33
,則n的值為
50
50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a3=4,a9=16,則此等差數(shù)列的公差d=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=8,a3=4.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn;
(3)設(shè)bn=
1n(12-an)
( n∈N*),求Tn=b1+b2+…+bn( n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和Sn滿足S20=S40,下列結(jié)論中一定正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案