已知集合A={a|a<x<5},B={x|x≥2},且滿足A⊆B,求實(shí)數(shù)a的取值范圍.
分析:A⊆B,是指集合A的解集都在集合B的解集里面,由此可得結(jié)論.
解答:解:∵集合A={a|a<x<5},B={x|x≥2},且滿足A⊆B,
∴集合A的解集都在集合B的解集里面,
∴a≥2
點(diǎn)評(píng):本題考查了集合的包含關(guān)系的應(yīng)用,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知集合A={a,b},B={a,b,c},C={b,c,d},那么集合(A∩B)∪C等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(Ⅱ)對(duì)任何具有性質(zhì)P的集合A,證明:n≤
k(k-1)2
;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<a},B={x|x2-3x+2<0}且A∪(?RB)=R,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A是函數(shù)y=lg(20+8x-x2)的定義域,集合B是不等式x2-2x+1-a2≥0(a>0)的解集,p:x∈A,q:x∈B,
(Ⅰ)若A∩B=∅,求a的取值范圍;
(Ⅱ)若?p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案