(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設(shè)函數(shù),數(shù)列滿足,(∈N*,且≥2)。
(1)求數(shù)列的通項公式;
(2)設(shè),若≥對∈N*恒成立,求實數(shù)的取值范圍;
(3)是否存在以為首項,公比為()的數(shù)列,,使得數(shù)列中的每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由。
(本題滿分16分,第1小題 4分,第2小題6分,第3小題6分)
解:⑴因為,
所以.………………………………………………………………………2分
因為,所以數(shù)列是以1為首項,公差為的等差數(shù)列.
所以.…………………………………………………………………………4分
⑵①當時,
.……………………………………………………………………6分
②當時,
.…………………………………………8分
所以
要使對恒成立,
只要使.
只要使,
故實數(shù)t的取值范圍為.……………………………………………………10分
⑶由,知數(shù)列中每一項都不可能是偶數(shù).
①如存在以為首項,公比q為2或4的數(shù)列,,
此時中每一項除第一項外都是偶數(shù),故不存在以為首項,
公比為偶數(shù)的數(shù)列.………………………………………12分
②當時,顯然不存在這樣的數(shù)列.
當時,若存在以為首項,公比為3的數(shù)列,.
則,,,.
所以滿足條件的數(shù)列的通項公式為.…………………………16分
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
求點的軌跡方程;
過點的直線交上述軌跡于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數(shù)列的前項和為,且滿足,,
(1)求數(shù)列的通項公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);
(3)若(2)中的的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
在平行四邊形中,已知過點的直線與線段分別相交于點。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義在上的偶函數(shù),當時,且函數(shù)圖象關(guān)于直線對稱,求證:,并求時的解析式;
(3)在(2)的條件下,不等式在上恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、為坐標平面上的點,直線(為坐標原點)與拋物線交于點(異于).
(1) 若對任意,點在拋物線上,試問當為何值時,點在某一圓上,并求出該圓方程;
(2) 若點在橢圓上,試問:點能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3) 對(1)中點所在圓方程,設(shè)、是圓上兩點,且滿足,試問:是否存在一個定圓,使直線恒與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
(1) 求點的軌跡方程;
(2) 過點的直線交上述軌跡于兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com