函數(shù),其中為實(shí)常數(shù)。
(1)討論的單調(diào)性;
(2)不等式上恒成立,求實(shí)數(shù)的取值范圍;
(3)若,設(shè),。是否存在實(shí)常數(shù),既使又使對(duì)一切恒成立?若存在,試找出的一個(gè)值,并證明;若不存在,說明理由.

(1)當(dāng)時(shí),增區(qū)間為,無減區(qū)間;當(dāng)時(shí),增區(qū)間為,減區(qū)間為;(2);(3)存在,如等,證明見詳解.

解析試題分析:(1)首先求導(dǎo)函數(shù),然后對(duì)參數(shù)進(jìn)行分類討論的單調(diào)性;(2)根據(jù)函數(shù)的解析式可將問題轉(zhuǎn)化為的最大值,再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性來確定其最值;(3)假設(shè)存在,將問題轉(zhuǎn)化為證明:成立,然后可考慮綜合法與分析法進(jìn)行證明.
試題解析:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3f/5/13uog4.png" style="vertical-align:middle;" />,
①當(dāng)時(shí),在定義域上單增;
②當(dāng)時(shí),當(dāng)時(shí),,單增;當(dāng)時(shí),單減.
增區(qū)間:,減區(qū)間:
綜上可知:當(dāng)時(shí),增區(qū)間,無減區(qū)間;當(dāng)時(shí),增區(qū)間:,減區(qū)間:
(2)對(duì)任意恒成立
,令,
上單增,
,故的取值范圍為
(3)存在,如等.下面證明:
成立.
①先證,注意
這只要證(*)即可,
容易證明對(duì)恒成立(這里證略),取即可得上式成立.
分別代入(*)式再相加即證:,
于是
②再證
法一:
,
只須證,構(gòu)造證明函數(shù)不等式:,
,
當(dāng)時(shí),上單調(diào)遞減,
當(dāng)時(shí),恒有,即恒成立.
,取,則有
分別代入上式再相加即證:
,
即證

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2-ln xx∈(0,e],其中e是自然對(duì)數(shù)的底數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)確定yf(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-xax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=exax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3x2axax∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=aln x(a為常數(shù)).
(1)若曲線yf(x)在點(diǎn)(1,f(1))處的切線與直線x+2y-5=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)x≥1時(shí),f(x)≤2x-3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax3x2cxd(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,cd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),函數(shù)
(1)當(dāng)時(shí),求內(nèi)的極大值;
(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.(其中的導(dǎo)函數(shù).)

查看答案和解析>>

同步練習(xí)冊(cè)答案