平面直角坐標(biāo)系中,已知A(-2,0),B(2,0),C(1,0),P是x軸上任意一點,平面上點M滿足:
PM
PB
CM
CB
對任意P恒成立,則點M的軌跡方程為
 
考點:軌跡方程
專題:計算題,平面向量及應(yīng)用
分析:設(shè)P(t,0),M(x,y),利用
PM
PB
CM
CB
對任意P恒成立,可得t2-(2+x)t+x+1≥0恒成立,即可得到(2+x)2-4x-4≤0,從而可得結(jié)論.
解答: 解:設(shè)P(t,0),M(x,y),則
∵A(-2,0),B(2,0),C(1,0),
PM
PB
CM
CB
,
∴(x-t,y)•(2-t,0)≥(x-1,y)•(1,0),
∴(x-t)(2-t)≥x-1,
∴t2-(2+x)t+x+1≥0恒成立,
∴(2+x)2-4x-4≤0,
∴x2≤0,即x=0,
故答案為:x=0.
點評:本題考查軌跡方程,考查向量知識的運用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c,d∈R,且a2+b2=2,c2+d2=2,則ac+bd的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線:
2
ax+by=1(其中a,b是實數(shù)) 與圓:x2+y2=1(O是坐標(biāo)原點)相交于A,B兩點,且△AOB是直角三角形,點P(a,b)是以點M(0,1)為圓心的圓M上的任意一點,則圓M的面積最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,若該正視圖面積為5,則此幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={lgx,lgy,lg(x+
y
x
)}的子集是B={0,1},則A的最大元素可能是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
a
a2-2
(a2-a-x)
(a>0,且a≠1)在﹙﹢∞,-∞)上是增函數(shù),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程式y(tǒng)=±
3
x,則雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足:
x2+y≤1
x-y-1≤0
x+y+1≥0
,則2x+y的取值范圍為( 。
A、[-
5
,
5
]
B、[-2,
5
]
C、[-1,2]
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F2(1,0),點H(2,
2
10
3
)在橢圓上.
(1)求橢圓的方程;
(2)點M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點,問:△PF2Q的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案