下列條件中,能使的條件是(   )
A.平面內(nèi)有無數(shù)條直線平行于平面
B.平面與平面同平行于一條直線
C.平面內(nèi)有兩條直線平行于平面
D.平面內(nèi)有兩條相交直線平行于平面
D
選項(xiàng)A、C:必須是任意一條都與平面平行;B:兩平面外一條直線與兩個(gè)平面的交線平行,則與兩平面都平行。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知如下結(jié)論:“等邊三角形內(nèi)任意一點(diǎn)到各邊的距離之和等于此三角形的高”,將此結(jié)論拓展到空間中的正四面體(棱長(zhǎng)都相等的三棱錐),可得出的正確結(jié)論是:  ____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四面體中,,點(diǎn)分別是棱 的中點(diǎn)。
(Ⅰ)求證:平面;
(Ⅱ)求證:四邊形為矩形;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分15分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱,。
(1) 求證:側(cè)面底面
(2) 求側(cè)棱與底面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖正四面體ABCD,E為棱BC上的動(dòng)點(diǎn),則異面直線BD和AE所成角的余弦值的范圍為 _______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四邊形中(圖1),的中點(diǎn),,,將(圖1)沿直線折起,使二面角(如圖2)
(1)求證:平面
(2)求異面直線所成角的余弦值;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)為正方體的棱上一點(diǎn),且,則面與面所成二面角的正切值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平行六面體中,,,,,則對(duì)角線的長(zhǎng)度為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B。
(I)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(II)求二面角E—DF—C的余弦值;
(III)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案