在△ABC中,分別為角所對的三邊,已知

(Ⅰ)求的值

(Ⅱ)若,求邊的長.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

試題分析:(Ⅰ)求的值,可考慮利用正弦定理,也可利用面積公式,但本題已知,顯然是余弦定理形式,可考慮利用余弦定理求出,因此對變形為,可得,從而求出的值;(Ⅱ)若,求邊的長,可利用余弦定理,也可利用正弦定理來求,本題由(Ⅰ)知,只要能求出,利用余弦定理即可解決,由已知,利用,根據(jù)兩角和與差的正弦公式即可求出,從而求出邊的長.

試題解析:(Ⅰ)∵b2+c2-a2=bc,cosA==         (3分)

又∵    ∴sinA==    (5分)

(Ⅱ)在△ABC中,sinA=,a=,cosC=

可得sinC=          (6分)

∵A+B+C=p

∴sinB =sin(A+C)= ×+×=   (9分)

由正弦定理知:

∴b===.           (12分)

考點:解三角形.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆甘肅天水一中高二下學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

在△ABC中,分別為三個內(nèi)角的對邊,銳角滿足. (Ⅰ)求的值;

(Ⅱ) 若,當取最大值時,求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省紹興市高一下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

ABC中,分別為的對邊,上的高為,且,則的最大值為                                  (     )

A.3                B.             C.2                D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市長河高三市二測?紨(shù)學文卷 題型:解答題

(本小題滿分14分)在△ABC中,分別為角A、B、C的對邊,

     ,  =3, △ABC的面積為6.

⑴  角A的正弦值;                ⑵求邊b、c.        

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市長河高三市二測模考數(shù)學理卷 題型:解答題

(本小題滿分14分)

在△ABC中,分別為角A、B、C的對邊, ,=3, △ABC的面積為6,D為△ABC

      內(nèi)任一點,點D到三邊距離之和為d。

(1)角A的正弦值;           ⑵求邊b、c;       ⑶求d的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省姜堰市高三學情調(diào)查數(shù)學試卷 題型:解答題

(本小題滿分14分)

在△ABC中,分別為角A、B、C的對邊,=3, △ABC的面積為6

⑴求角A的正弦值;        

⑵求邊b、c;      

 

查看答案和解析>>

同步練習冊答案