【題目】如圖,在四棱錐中,平面ABCD,底面ABCD為梯形,,,,,EPC的中點(diǎn).

證明:平面PAD

求二面角的余弦值.

【答案】(1)見(jiàn)解析(2)

【解析】

設(shè)FPD的中點(diǎn),連接EF,證明,推出四邊形ABEF為平行四邊形,所以然后證明平面PAD

AB中點(diǎn)M,連接DM,證明,以DM、DC、DP所在直線(xiàn)為x軸、y軸、z軸建立空間直角坐標(biāo)系,求出平面PBC的一個(gè)法向量,平面PCD的一個(gè)法向量,設(shè)二面角的平面角為,利用空間向量的數(shù)量積求解即可

證明:設(shè)FPD的中點(diǎn),連接EF,FA

因?yàn)?/span>EF的中位線(xiàn),所以,

,,所以,且

故四邊形ABEF為平行四邊形,所以

平面PAD,平面PAD,所以平面

解:取AB中點(diǎn)M,連接DM

,,

為等邊三角形

從而,中線(xiàn),且,

,故D

如圖所示,

DM、DC、DP所在直線(xiàn)為x軸、y軸、z軸建立空間直角坐標(biāo)系,

,

,4,,0,

于是,

設(shè)平面PBC的一個(gè)法向量為y,

,,從而,

,解得

,得,且

易知,平面PCD的一個(gè)法向量為,且

設(shè)二面角的平面角為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為考察某種疫苗預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:現(xiàn)從所有試驗(yàn)動(dòng)物中任取一只,取到注射疫苗動(dòng)物的概率為.

未發(fā)病

發(fā)病

總計(jì)

未注射疫苗

20

x

A

注射疫苗

40

y

B

總計(jì)

60

40

100

1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值.

2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為疫苗有效?

附:

臨界值表:

P(K2k0)

0.05

0.01

0.005

0.001

k0

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) 的左、右焦點(diǎn)分別為, 為坐標(biāo)原點(diǎn), 是雙曲線(xiàn)上在第一象限內(nèi)的點(diǎn),直線(xiàn)分別交雙曲線(xiàn)左、右支于另一點(diǎn), ,且,則雙曲線(xiàn)的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的病毒基因序列公布后,科學(xué)家們便開(kāi)始了病毒疫苗的研究過(guò)程.但是類(lèi)似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測(cè)接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無(wú)關(guān).

1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為.本著節(jié)約成本的原則,選擇哪種實(shí)驗(yàn)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上有12個(gè)點(diǎn)且任意三點(diǎn)不共線(xiàn).以其中任意一點(diǎn)為始點(diǎn)、另一點(diǎn)為終點(diǎn)作向量且作出所有的向量,其中,三邊向量的和為零向量的三角形稱(chēng)為“零三角形”.求以這12個(gè)點(diǎn)為頂點(diǎn)的零三角形個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線(xiàn)l的極坐標(biāo)方程為,曲線(xiàn)C的參數(shù)方程為(為參數(shù)).

若曲線(xiàn)上存在M,N兩點(diǎn)關(guān)于直線(xiàn)l對(duì)稱(chēng),求實(shí)數(shù)m的值;

若直線(xiàn)與曲線(xiàn)相交于P,Q兩點(diǎn),且,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量=(1,-3,2),=(-2,1,1),點(diǎn)A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直線(xiàn)AB上,是否存在一點(diǎn)E,使得?(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過(guò)個(gè)國(guó)家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國(guó)家或地區(qū)直接宣布“封國(guó)”或“封城”,隨著國(guó)外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開(kāi)始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數(shù)量(萬(wàn)家)

5.28

4.72

3.58

2.70

2.15

倒閉企業(yè)所占比例

21.4%

19.1%

14.5%

10.9%

8.7%

1)由所給數(shù)據(jù)可用線(xiàn)性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

2)建立關(guān)于的回歸方程,預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例.

參考數(shù)據(jù):,,,,

相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,.

1)若是增函數(shù),求實(shí)數(shù)a的范圍;

2)若上最小值為3,求實(shí)數(shù)a的值;

3)若時(shí)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案