設(shè)函數(shù)f(x)=x2+2x+alnx,當(dāng)t≥1時(shí),不等式f(2t-1)≥2f(t)-3恒成立,則實(shí)數(shù)a的取值范圍是________.

a≤2
分析:由f(x)的解析式化簡(jiǎn)不等式,得到當(dāng)t≥1時(shí),t2≥2t-1,∴.即t>1時(shí),恒成立即要求出 的最小值即可得到a的范圍.
解答:∵f(x)=x2+2x+alnx,∴
當(dāng)t≥1時(shí),t2≥2t-1,∴.即t>1時(shí),恒成立.又易證ln(1+x)≤x在x>-1上恒成立,
在t>1上恒成立.當(dāng)t=1時(shí)取等號(hào),
∴當(dāng)t≥1時(shí),,∴由上知a≤2.故實(shí)數(shù)a的取值范圍是(-∞,2].
點(diǎn)評(píng):本題考查函數(shù)恒成立時(shí)所取的條件.考查考生的運(yùn)算、推導(dǎo)、判斷能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案