半徑為2的球面上有A,B,C,D四點(diǎn),且AB,AC,AD兩兩垂直,則三個三角形面積之和的最大值為(    )

(A)4               (B)8               (C)16                (D) 32

 

【答案】

B

【解析】

試題分析:設(shè)AB=a,AC=b,AD=c,因?yàn),半徑?的球面上有A,B,C,D四點(diǎn),且AB,AC,AD兩兩垂直,所以,AB,AC,AD為球的內(nèi)接長方體的一個角的三條棱.

故a2+b2+c2=16,

而 SABC+SACD+SADB(ab+ac+bc)

8.

故選B.

考點(diǎn):球及其內(nèi)接幾何體的特征,基本不等式的應(yīng)用。

點(diǎn)評:小綜合題,關(guān)鍵是發(fā)現(xiàn)AB,AC,AD為球的內(nèi)接長方體的一個角的三條棱,得到a2+b2+c2=16,計算三個三角形的面積之和,利用基本不等式求最大值。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在半徑為2的球面上有A、B、C、D四點(diǎn),若AB=CD=2,則四面體ABCD的體積的最大值為(  )
A、
2
3
3
B、
4
3
3
C、2
3
D、
8
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為2的球面上有A,B,C,D四點(diǎn),且AB,AC,AD兩兩垂直,則三個三角形面積之和S△ABC+S△ACD+S△ADB的最大值為( 。
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為2的球面上有A、B、C、D四點(diǎn),若AB=CD=2,則四面體ABCD的體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為2的球面上有A,B,C,D四點(diǎn),且AB,AC,AD兩兩垂直,若記△ABC,△ACD,△ADB的面積之和為N,則N的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年寧夏高三第一次模擬考試數(shù)學(xué)文卷 題型:選擇題

已知在半徑為2的球面上有A、B、C、D四點(diǎn),若AB=CD=2,則四面體ABCD的體積的最大值為

(A)       (B)      (C)    (D)  

 

查看答案和解析>>

同步練習(xí)冊答案