3.已知A={x|x2-2mx+m2-1<0}.
(1)若m=2,求A;
(2)已知1∈A,且3∉A,求實數(shù)m的取值范圍.

分析 (1)若m=2,解一元二次不等式,即可求A;
(2)已知1∈A,且3∉A,則1-2m+m2-1<0且9-6m+m2-1≥0,即可求實數(shù)m的取值范圍.

解答 解:(1)若m=2,A={x|x2-2mx+m2-1<0}={x|x2-4x+3<0}=(1,3);
(2)已知1∈A,且3∉A,則1-2m+m2-1<0且9-6m+m2-1≥0
∴0<m<2.

點評 本題考查不等式的解法,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)S一個骰子的試驗,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“小于4的點數(shù)出現(xiàn)”,則一次試驗中,事件A+$\overline{B}$發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.班主任為了對本班學(xué)生的考試成績進行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機抽取一個容量為8的樣本進行分析.
(Ⅰ)如果按性別比例分層抽樣,求樣本中男生、女生人數(shù)分別是多少;
(Ⅱ)隨機抽取8位同學(xué),數(shù)學(xué)成績由低到高依次為:60,65,70,75,80,85,90,95;
物理成績由低到高依次為:72,77,80,84,88,90,93,95,若規(guī)定90分(含90分)以上為優(yōu)秀,記ξ為這8位同學(xué)中數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}滿足${a_1}>\frac{3}{2}$,${a_{n+1}}={a_n}^2-{a_n}+1$,且$\sum_{i=1}^{2017}{\frac{1}{a_i}}=2$,則4a2018-a1的最大值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.$\frac{{41\sqrt{41}}}{48}π$B.$\frac{41}{4}π$C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=sinα-sinx,則f′(α)=( 。
A.-sinαB.-cosαC.cosα-sinαD.sinα-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,偶函數(shù)是(  )
A.y=2x-$\frac{1}{{2}^{x}}$B.y=xsinxC.y=excosxD.y=x2+sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(-1,3),則(  )
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$⊥$\overrightarrow$C.$\overrightarrow{a}$∥($\overrightarrow{a}$-$\overrightarrow$)D.$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},那么A∩(∁UB)等于( 。
A.{2}B.{5}C.{3,4}D.{22,3,4,5}

查看答案和解析>>

同步練習(xí)冊答案