如果橢圓的焦距、短軸長、長軸長成等差數(shù)列,則其離心率為(   )
A.B.C.D.
A
解:由題意,橢圓的焦距、短軸長、長軸長成等差數(shù)列,
∴4b=2c+2a
∴2b=c+a
∴4b2=c2+2ac+a2
∴3a2-2ac-5c2=0
∴5e2+2e-3=0
∴(e+1)(5e-3)=0
∴e=
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題10分)中心在原點,焦點在x軸上的橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過 橢圓C的右頂點.求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的右焦點為,右準線為,點,線段于點,若,則=( 。
a.                b. 2                   C.                 D. 3        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè)軸對稱的任意兩個不同的點,連結(jié)交橢圓
于另一點,證明:直線x軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于、兩點,求的取值
范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓C的中心在圓點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,M是橢圓短軸的一個端點,過F1的直線與橢圓交于A,B兩點,的面積為4,的周長為(I)求橢圓C的方程;(II)設(shè)點Q的坐標為(1,0),是否存在橢圓上的點P及以Q為圓心的一個圓,使得該圓與直線PF1,PF2都相切,若存在,求出P點坐標及圓的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:焦點在軸上,左、右頂點分別為A1、A,上頂點為B.拋物線C1、C:分別以A、B為焦點,其頂點均為坐標原點O,C1與C2相交于直線上一點P.

⑴求橢圓C及拋物線C1、C2的方程;
⑵若動直線與直線OP垂直,且與橢圓C交于不同兩點M、N,已知點Q(,0),求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點恰好是橢圓的右焦點,且兩條曲線的交點連線也過焦點,則橢圓的離心率為             (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 (本小題滿分12分)
橢圓的離心率,過右焦點的直線與橢圓相交
A、B兩點,當直線的斜率為1時,坐標原點到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點,使得當直線繞點轉(zhuǎn)到某一位置時,有
立?若存在,求出所有滿足條件的點的坐標及對應(yīng)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的右焦點為圓心作一個圓過橢圓的中心O并交橢圓于M、N,若過橢圓左焦點的直線是圓的切線,則橢圓的右準線與圓的位置關(guān)系是_______________.

查看答案和解析>>

同步練習冊答案