命題P:關(guān)于x的方程x2+mx+1=0有兩個不等的負(fù)實數(shù)根,命題q:關(guān)于x的方程4x2+4(m-2)x+1=0無實數(shù)根.若p或q為真命題,p且q為假命題,求實數(shù)m的取值范圍.
分析:對兩個條件化簡,求出各自成立時參數(shù)所滿足的范圍,判斷出兩命題的真假情況,然后根據(jù)命題P和Q有且僅有一個正確 求出實數(shù)m的取值范圍.
解答:解:命題P:
1=m2-4>0
x1+x2=-m<0
x1x2=1>0
,解得m>2
命題Q:△2=16(m-2)2-16<0,解得1<m<3
∵p或q為真命題,p且q為假命題,
∴命題P和Q有且僅有一個正確:
①p真q假時,
m>2
m≥3或m≤1
,∴m≥3.
②p假q真時,
m<2
1<m<3
,∴1<m≤2.
∴m的取值范圍是{m|1<m≤2或m≥3}.
點評:本題考查復(fù)合命題真假的判斷條件.解決此類問題,要轉(zhuǎn)化成判斷構(gòu)成復(fù)合命題的兩個命題的真假.同時考查學(xué)生的邏輯思維能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-ax+4=0有實根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù).若p或q是真命題,p且q是假命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:關(guān)于x的方程x22ax-2a=0無實根,命題q:關(guān)于x的不等式x2+ax+4>0的解集為R.如果命題“p∧q”為假命題,“¬q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程ax-1=0在[-1,1]上有解;命題q:只有一個實數(shù)x滿足不等式x2+2ax+2a≤0,若命題“p或q”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“關(guān)于x的方程x2-ax+a=0無實根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實數(shù)a的取值范圍是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-2x+a=0有實根,命題q:函數(shù)f(x)=(a+1)x+2是減函數(shù),若p∨q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案