(08年湖北卷理)如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:

a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④.

其中正確式子的序號(hào)是

A.①③       B.②③    C.①④    D.②④

【標(biāo)準(zhǔn)答案】B

【試題解析】由焦點(diǎn)到頂點(diǎn)的距離可知②正確,由橢圓的離心率知③正確,故應(yīng)選B.

【高考考點(diǎn)】橢圓的基本量之間的關(guān)系.

【易錯(cuò)提醒】沒有抓住問題的關(guān)鍵,用錯(cuò)不等式。

【備考提示】圓錐曲線的基本量之間的關(guān)系是高考常考內(nèi)容,考生應(yīng)從代數(shù)、幾何、不等式方面入手。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷理)(本小題滿分13分)

如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點(diǎn),

∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過點(diǎn)P.

(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

(Ⅱ)設(shè)過點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F.

若△OEF的面積不小于2,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷理)(本小題滿分12分)

如圖,在直三棱柱中,平面側(cè)面

(Ⅰ)求證:

(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關(guān)系,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖北卷理)(本小題滿分12分)

如圖,在直三棱柱中,平面側(cè)面

(Ⅰ)求證:

(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關(guān)系,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案