給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

(1) ; (2) 垂直.

解析試題分析:(1)由“橢圓C的一個焦點為,其短軸上的一個端點到F的距離為”知:從而可得橢圓的標準方程和“準圓”的方程;
(2)分兩種情況討論:①當中有一條直線斜率不存在;②直線斜率都存在.
對于①可直接求出直線的方程并判斷其是不互相垂直;
對于②設經過準圓上點與橢圓只有一個公共點的直線為
與橢圓方程聯(lián)立組成方程組消去得到關于的方程:
化簡整理得:
而直線的斜率正是方程的兩個根,從而
(1)
橢圓方程為
準圓方程為
(2)①當中有一條無斜率時,不妨設無斜率,
因為與橢圓只有一個共公點,則其方程為
方程為時,此時與準圓交于點
此時經過點(或)且與橢圓只有一個公共瞇的直線是(或
(或),顯然直線垂直;
同理可證方程為時,直線也垂直.
②當都有斜率時,設點其中
設經過點與橢圓只有一個公共點的直線為
則由消去,得

化簡整理得:
因為,所以有
的斜率分別為,因為與橢圓只有一個公共點
所以滿足上述方程
所以,即垂直,
綜合①②知, 垂直.
考點:1、橢圓的標準方程;2、直線與圓錐曲線的綜合問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的一個焦點為,且離心率為
(1)求橢圓方程;
(2)過點且斜率為的直線與橢圓交于兩點,點關于軸的對稱點為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2014·武漢模擬)已知點P是圓M:x2+(y+m)2=8(m>0,m≠)上一動點,點N(0,m)是圓M所在平面內一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(1)當P在圓M上運動時,記動點Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標準方程.
(2)過原點斜率為k的直線交曲線Г于A,B兩點,其中A在第一象限,且它在x軸上的射影為點C,直線BC交曲線Г于另一點D,記直線AD的斜率為k′,是否存在m,使得對任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓E:的焦點在x軸上.
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1、F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內的點,直線F2P交y軸于點Q,并且F1P⊥F1Q.證明:當a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓交于兩點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,離心率為的橢圓上的點到其左焦點的距離的最大值為3,過橢圓內一點的兩條直線分別與橢圓交于點、、,且滿足,其中為常數(shù),過點的平行線交橢圓于、兩點.

(1)求橢圓的方程;
(2)若點,求直線的方程,并證明點平分線段.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的斜率互為相反數(shù),求證:直線l過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的一個焦點為,離心率為.設是橢圓長軸上的一個動點,過點且斜率為的直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案