如圖,P是直線l上任意一點,A是直線l外一點,它關于直線l的對稱點為A′,是直線l的一個方向向量,且

                   

A.                                                        B.       

C.                                             D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)如圖,在平面直角坐標系xoy中,設點F(0,p)(p>0),直線l:y=-p,點p在直線l上移動,R是線段PF與x軸的交點,過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動點Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點M做曲線C的兩條切線,設切點為A、B,求證:直線AB恒過一定點;
(Ⅲ)對(Ⅱ)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二第二次月考理科數(shù)學試卷(解析版) 題型:解答題

(本小題14分) 如圖,在平面直角坐標系xoy中,設點F(0, p)(p>0), 直線l : y= -p, 點P在直線l上移動,R是線段PF與x軸的交點, 過R、P分別作直線,使, .

 (1)求動點Q的軌跡C的方程;

(2)在直線l上任取一點M做曲線C的兩條切線,設切點為A、B,求證:直線AB恒過一定點;

(3)對(2)求證:當直線MA, MF, MB的斜率存在時,直線MA, MF, MB的斜率的倒數(shù)成等差數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二第二次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題14分)如圖,在平面直角坐標系xoy中,設點F(0, p)(p>0), 直線l : y= -p, 點P在直線l上移動,R是線段PF與x軸的交點, 過R、P分別作直線、,使, .

 (1) 求動點的軌跡的方程;

(2)在直線上任取一點做曲線的兩條切線,設切點為,求證:直線恒過一定點.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xoy中,設點F(0,p)(p>0),直線l:y=-p,點p在直線l上移動,R是線段PF與x軸的交點,過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動點Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點M做曲線C的兩條切線,設切點為A、B,求證:直線AB恒過一定點;
(Ⅲ)對(Ⅱ)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省衢州市江山實驗中學高二(下)5月月考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,在平面直角坐標系xoy中,設點F(0,p)(p>0),直線l:y=-p,點p在直線l上移動,R是線段PF與x軸的交點,過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動點Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點M做曲線C的兩條切線,設切點為A、B,求證:直線AB恒過一定點;
(Ⅲ)對(Ⅱ)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

同步練習冊答案