(本題滿分12分)

已知橢圓C:的上頂點(diǎn)坐標(biāo)為,離心率為.

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)P為橢圓上一點(diǎn),A為左頂點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),求的取值范圍.

 

【答案】

(I)橢圓方程為 ;(Ⅱ)的取值范圍為。

【解析】

試題分析:解:(I)依題意得:,橢圓方程為 

(Ⅱ)設(shè),則---(*)

點(diǎn)滿足,代入(*)式,得:

根據(jù)二次函數(shù)的單調(diào)性可得:的取值范圍為

考點(diǎn):本題主要考查橢圓方程的應(yīng)用、平面向量數(shù)量積的運(yùn)算等,涉及最值問(wèn)題.

點(diǎn)評(píng):最值問(wèn)題解題的思路是先設(shè)出變量,表示出要求的表達(dá)式,結(jié)合圓錐曲線的方程,將其轉(zhuǎn)化為只含一個(gè)變量的關(guān)系式,進(jìn)而由不等式的性質(zhì)或函數(shù)的最值進(jìn)行計(jì)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案