函數(shù)f(x)=cosx-
3
sinx
的單調(diào)遞減區(qū)間為
 
分析:化簡(jiǎn)函數(shù)的解析式為-2sin(x-
π
6
),此題即求 y=sin(x-
π
6
) 的增區(qū)間,由2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
,k∈z求出x
的范圍,即為所求.
解答:解:函數(shù)f(x)=cosx-
3
sinx
=2sin(
π
6
-x)=-2sin(x-
π
6
),
故此題即求 y=sin(x-
π
6
) 的增區(qū)間.
由 2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
,k∈z,可得 2kπ-
π
3
≤ x ≤2kπ+
3
,k∈z,
故答案為:[2kπ-
π
3
,2kπ+
3
]
,k∈z.
點(diǎn)評(píng):本題考查兩角和的正弦公式,正弦函數(shù)的單調(diào)性,得到2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
,k∈z,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π3
)+sin2x-cos2x

(Ⅰ)求函數(shù)f(x)的最小正周期及圖象的對(duì)稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(2x+
π
2
)
是( 。
A、最小正周期為π的偶函數(shù)
B、最小正周期為
π
2
的偶函數(shù)
C、最小正周期為π的奇函數(shù)
D、最小正周期為
π
2
的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)f(x)=
1
lgx
在(0,+∞)
是減函數(shù);
②在平面上,到定點(diǎn)(2,-1)的距離與到定直線3x-4y-10=0距離相等的點(diǎn)的軌跡是拋物線;
③設(shè)函數(shù)f(x)=cos(
3
x+
π
6
)
,則f(x)+f'(x)是奇函數(shù);
④雙曲線
x2
25
-
y2
16
=1
的一個(gè)焦點(diǎn)到漸近線的距離是5;
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)已知函數(shù)f(x)=cos(π-x)sin(
π
2
+x)+
3
sinxcosx

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求當(dāng)x∈[0,
π
2
]
時(shí),f(x)的最大值及最小值;
(Ⅲ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+
π
3
)+sin2x
,
(1)化簡(jiǎn)f(x);
(2)若不等式f(x)-m<2在x∈[
π
4
,
π
2
]
上恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
2
)=-
1
4
,求sinA.

查看答案和解析>>

同步練習(xí)冊(cè)答案