12.已知直線l的傾斜角是直線y=2x+3傾斜角的2倍,則直線l的斜率為$-\frac{4}{3}$.

分析 設(shè)直線y=2x+3傾斜角為θ,則tanθ=2,直線l的傾斜角是2θ,利用斜率計(jì)算公式、倍角公式即可得出.

解答 解:設(shè)直線y=2x+3傾斜角為θ,
則tanθ=2,直線l的傾斜角是2θ,
則直線l的斜率=tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\frac{2×2}{1-{2}^{2}}$=$-\frac{4}{3}$,
故答案為:$-\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了斜率計(jì)算公式、倍角公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合{a,b,c,d}={1,2,3,4},且下列四個(gè)關(guān)系:①a=1;②b≠1;③c=2;④d≠4有且只有一個(gè)是正確的,則符合條件的有序數(shù)組(a,b,c,d)的個(gè)數(shù)是 (  )
A.1種B.6種C.8種D.9種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2-2lnx
(Ⅰ) 求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若對(duì)任意x∈(0,+∞),不等式f(x)>x(x+a)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=$\sqrt{x+2}$+$\sqrt{3-x}$的定義域?yàn)閇-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx(x≠0)只有一個(gè)零點(diǎn)x=3.
(I)求函數(shù)f(x)的解析式;
(II)若函數(shù)g(x)=f(x)+mlnx在區(qū)間[0,2]上有極值點(diǎn),求m取值范圍
(III)是否存在兩個(gè)不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時(shí),函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若直線a,b與兩異面直線c,d都相交,則直線a,b的位置關(guān)系是相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若關(guān)于x的不等式4x-2x+1-a≤0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a、b、c分別是A、B、C的對(duì)邊,已知2cos$\frac{C}{2}$-sin$\frac{C}{2}$+1=0.
( I)求sinC的值;
( II)若a2+b2=4(a+b)-8,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.圓心為(1,-1),半徑為2的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y+1)2=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案