已知,
(Ⅰ)若存在實數(shù)k和t,使,,且,試求函數(shù)關(guān)系式k=f(t);
(Ⅱ)根據(jù)(Ⅰ)的結(jié)論,確定k=f(t)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a>0,若過點(a,b)可作曲線k=f(t)的三條切線,求證:
【答案】分析:(Ⅰ)由,,知=0,||=2,||=1,由此能求出k=f(t).
(Ⅱ)由f(t)=,知f′(x)=k′==,由此能求出k=f(t)的單調(diào)區(qū)間.
(Ⅲ)設(shè)切點為(t,),,則切線方程為:y-,由切線方程過(a,b),知b-=,由此能夠證明

解答:解:(Ⅰ)∵知,,
=0,||==2,||==1,
=()+(,)=(),=(-)+()=(),
=-4k+t(t2-3)=0,
∴k=f(t)=
(Ⅱ)∵f(t)=
∴f′(x)=k′==,
令k′>0,得t>1,或t<-1,
令k′<0,得-1<t<1,
∴k=f(t)的單調(diào)增區(qū)間為(1,+∞),(-∞,-1);單調(diào)減區(qū)間為(-1,1).
(Ⅲ)設(shè)切點為(t,),,
∴切線方程為:y-,
∵切線方程過(a,b),
∴b-=,
4b-t3+3t=(3t2-3)(a-t),
4b-t3+3t=3at2-3t2-3a+3t,
∴3a+4b=-2t3+3at2有三個不同的根,
令g(t)=-2t3+3at2,
g′(t)=-6t2+6at=-6t(t-a),
令g′(t)=0,得t=0,或t=a.
令g′(t)>0,得0<t<a,
令g′(x)<0,得t>a,或t<0,
∴g(t)極小值=g(0)=0,
g(t)極大值=g(a)=a3
∴要使3a+4b=-2t3+3at2有三個不同的根,
則0<3a+4b<a3,
,

點評:本題考查數(shù)量積判斷兩個平面向量垂直的條件的應(yīng)用,具體涉及到平面向量的性質(zhì)、導(dǎo)數(shù)的應(yīng)用、函數(shù)性質(zhì)、切線方程等基本知識點,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若存在實常數(shù)k和b,使函數(shù)f(x)和g(x)對其定義域上的任意實數(shù)x恒有:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx,則可推知h(x),φ(x)的“隔離直線”方程為
y=2
e
x-e
y=2
e
x-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知和點M滿足.若存在實使得成立,則=

      

A.2         B.3                C.4                D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知和點M滿足.若存在實使得成立,則=

      

A.2         B.3                C.4                D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆福建省高一第四學(xué)段模塊考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知和點M滿足.若存在實使得成立,則=(    )

A.2           B.3      C.4          D.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(湖北卷)解析版(文) 題型:選擇題

 已知和點M滿足.若存在實使得成立,則=

              

A.2             B.3         C.4         D.5

 

查看答案和解析>>

同步練習(xí)冊答案