A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由兩條異面直線所成的角的取值范圍可以判斷①,由平面向量數(shù)量積的運(yùn)算可以判斷②,在空間,點(diǎn)M在平面ABC內(nèi)的充要條件是存在α、β、γ,使$\overrightarrow{OM}$=α$\overrightarrow{OA}$+β $\overrightarrow{OB}$+γ$\overrightarrow{OC}$且α+β+γ=1可以判斷③,由三個(gè)向量非零不共線可以判斷④,從而可得到正確的命題個(gè)數(shù).
解答 解:對于①:∵兩條異面直線所成的角的取值范圍是(0°,90°],
∴異面直線MN與PQ所成角的余弦值不能為負(fù)值,故①不正確;
對于②:∵$\overrightarrow{a}$•$\overrightarrow$=(2,4,-3)(-1,2,2)=-2+8-6=0,
∴$\overrightarrow{a}$⊥$\overrightarrow$.∴平面α與平面β垂直,故②正確;
對于③:∵$\overrightarrow{OM}=\frac{1}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}+\frac{2}{5}\overrightarrow{BC}$,且$\frac{1}{5}+\frac{4}{5}+\frac{2}{5}=\frac{7}{5}≠1$
∴M點(diǎn)不在平面ABC內(nèi),故③不正確;
對于④:∵向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是空間的一個(gè)基底,則向量$\overrightarrow a+\overrightarrow b+\overrightarrow c$、$\overrightarrow a+\overrightarrow b$、$\overrightarrow c$也是空間的一個(gè)基底,∵三個(gè)向量非零不共線,故④正確.
∴其中正確的命題個(gè)數(shù)是:2.
故選:B.
點(diǎn)評 本題考查了命題的真假判斷與應(yīng)用,考查了兩條異面直線所成的角的取值范圍以及平面向量數(shù)量積的運(yùn)算,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,-1) | B. | (2,5) | C. | (-2,-1] | D. | (-∞,2)∪[5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8π}{3}$+$\sqrt{15}$ | B. | $\frac{16π}{3}$+$\sqrt{3}$ | C. | $\frac{8π}{3}$+$\frac{2\sqrt{3}}{3}$ | D. | $\frac{16π}{9}$+$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20;23 | B. | 21.5;20,23 | C. | 20;20,23 | D. | 21.5;23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1023 | B. | 55 | C. | 45 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $ω=2,ϕ=\frac{π}{3}$ | B. | $ω=2,ϕ=\frac{π}{6}$ | C. | $ω=4,ϕ=\frac{π}{6}$ | D. | $ω=2,ϕ=-\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com