已知,,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以,為焦點的橢圓。
(1)求曲線C的方程;
(2)設曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。
(1);(2)
【解析】
試題分析:(1)設動圓圓心的坐標為(x,y)(x>0),由動圓在y軸右側(cè)與y軸相切,同時與圓F2相外切,知|CF2|-x=1,由此能求出曲線C的方程.
(2)依題意,c=1,|PF1|=,得xp=,由此能求出曲線E的標準方程.
(3)設直線l與橢圓E交點A(x1,y1),B(x2,y2),A,B的中點M的坐標為(x0,y0),將A,B的坐標代入橢圓方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能夠求出直線l的斜率k的取值范圍
解:(1)設動圓圓心的坐標為(x,y)(x>0)
因為動圓在y軸右側(cè)與y軸相切,同時與圓F2相外切,
所以|CF2|-x=1,…(1分)
∴(x-1)2+y2=x+1化簡整理得y2=4x,曲線C的方程為y2=4x(x>0); …(3分)(2)依題意,c=1,|PF1|=,得xp=,…(4分)∴|PF2|=,又由橢圓定義得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲線E的標準方程為
=1.…(6分)(3)設直線l與橢圓E交點A(x1,y1),B(x2,y2),A,B的中點M的坐標為(x0,y0),將A,B的坐標代入橢圓方程中,得3x12+4y12-12=0,3x22+4y22-12=0兩式相減得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴=-,…(7分)∵y02=4x0,∴直線AB的斜率k==-y0,…(8分)由(2)知xp=,∴yp2=4xp=,∴yp=±由題設-<y0< (y0≠0),∴-<-y0<,…(10分)即-<k<(k≠0).…(12分)
考點:曲線方程
點評:本題考查曲線方程的求法,考查直線的斜率的取值范圍的求法,解題時要認真審題,注意點差法和等價轉(zhuǎn)化思想的合理運用.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高三12月月考文科數(shù)學試卷(解析版) 題型:解答題
如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.
(1)求點的軌跡曲線的方程;
(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年重慶市高三上學期第四次月考理科數(shù)學試卷(解析版) 題型:解答題
( 本小題滿分12分)如圖所示,已知圓為圓上一動點,點在上,點在上,且滿足的軌跡為曲線。
求曲線的方程;
若過定點F(0,2)的直線交曲線于不同的兩點(點在點之間),且滿足,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年云南省高三第二次月考理科數(shù)學卷 題型:解答題
(本小題滿分12分)如圖所示,已知圓為圓上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。
(Ⅰ)求曲線E的方程;
(Ⅱ)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com