【題目】如圖,△ABC中,∠BAC90°,∠ABC30°.△ABD中,∠ADB90°,∠ABD45°,且AC1.將△ABD沿邊AB折疊后,

1)若二面角CABD為直二面角,則直線CD與平面ABC所成角的正切值為_______

2)若二面角CABD的大小為150°,則線段CD的長(zhǎng)為_______

【答案】

【解析】

作出二面角的平面角.

1)當(dāng)二面角為直角時(shí),判斷出直線與平面所成的角,解直角三角形求得線面角的正切值.

2)當(dāng)二面角大小為時(shí),結(jié)合余弦定理進(jìn)行解三角形,由此求得的長(zhǎng).

依題意ABC中,∠BAC90°,∠ABC30°.△ABD中,∠ADB90°,∠ABD45°,且AC1.所以.設(shè)分別是的中點(diǎn),所以,,所以是二面角的平面角,.

1)當(dāng)二面角為直角時(shí),由于,根據(jù)面面垂直的性質(zhì)定理可知平面,所以是直線img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/17/39a1a048/SYS202011261741258328971401_DA/SYS202011261741258328971401_DA.004.png" width="29" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />與平面所成的角..

2)當(dāng)二面角大小為時(shí),即,在三角形中,由余弦定理得.在三角形和三角形中,,由余弦定理得,,.

故答案為:(1). (2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左、右焦點(diǎn)為,,右支上的動(dòng)點(diǎn)(非頂點(diǎn)),的內(nèi)心.當(dāng)變化時(shí),的軌跡為(

A.直線的一部分B.橢圓的一部分

C.雙曲線的一部分D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的一元二次方程,其中是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

1)若隨機(jī)數(shù);

2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.

(1)若,求數(shù)列的前項(xiàng)和;

(2)若存在正整數(shù),使得,試比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元線性同余方程組問(wèn)題最早可見(jiàn)于中國(guó)南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問(wèn)題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問(wèn)物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí), 符合條件的共有_____個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓E(ab0)的離心率為,且橢圓E的短軸的端點(diǎn)到焦點(diǎn)的距離等于2

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)己知A,B分別為橢圓E的左、右頂點(diǎn),過(guò)x軸上一點(diǎn)P(異于原點(diǎn))作斜率為k(k0)的直線l與橢圓E相交于CD兩點(diǎn),且直線ACBD相交于點(diǎn)Q.①若k1,求線段CD中點(diǎn)橫坐標(biāo)的取值范圍;②判斷是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,下頂點(diǎn)為,上頂點(diǎn)為,是等邊三角形.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)直線,過(guò)點(diǎn)且斜率為的直線與橢圓交于點(diǎn) 異于點(diǎn),線段的垂直平分線與直線交于點(diǎn),與直線交于點(diǎn),若.

(ⅰ)求的值;

(ⅱ)已知點(diǎn),點(diǎn)在橢圓上,若四邊形為平行四邊形,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程;

2)斜率為的直線與拋物線交于、兩點(diǎn),點(diǎn)是線段的中點(diǎn),求直線的方程,并求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在無(wú)窮數(shù)列中,是給定的正整數(shù),,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項(xiàng);

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無(wú)窮多項(xiàng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案