已知△ABC的內角A,B,C,所對應的邊a,b,c,其中 a=2,tanB=
43

(Ⅰ)若 b=4,求sinA 的值
(Ⅱ)若△ABC的面積S△ABC=4,求 b,c的值.
分析:(Ⅰ)由tanB的值,利用同角三角函數(shù)間的基本關系求出cosB的值,進而求出sinB的值,再由a,b的值,利用正弦定理即可求出sinA的值;
(Ⅱ)由三角形的面積公式表示出三角形ABC的面積,由已知的面積及a,sinB的值,求出c的值,再由a,cosB的值,利用余弦定理即可求出b的值.
解答:解:(Ⅰ)∵tanB=
4
3
>0,且0<B<π,
∴cosB=
1
1+tan2B
=
3
5
,sinB=
1-cos2B
=
4
5

則由正弦定理得
a
sinA
=
b
sinB
,得:sinA=
asinB
b
=
4
5
4
=
2
5

(Ⅱ)∵S△ABC=
1
2
acsinB=4,
1
2
×2×c×
4
5
=4,
∴c=5,
由余弦定理得:b2=a2+c2-2accosB=4+25-12=17,
則b=
17
點評:此題倉庫了正弦、余弦定理,三角形的面積公式,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A、B、C的對邊分別為a,b,c,acosB+bcosA=csin(A-B),且a2+b2-
3
ab=c2
,求角A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A、B、C所對邊的長分別為a、b、c,若ac=5,且
BA
BC
=
5

(1)求△ABC的面積大小及tanB的值;
(2)若函數(shù)f(x)=
2cos2
x
2
+2sin
x
2
cos
x
2
-1
cos(
π
4
+x)
,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是
①④⑤
①④⑤
(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A,B,C成等差數(shù)列,則cos2A+cos2C的取值范圍是
[
1
2
,
3
2
]
[
1
2
3
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門一模)已知△ABC的內角A、B、C所對的邊a、b、c滿足(a+b)2-c2=6且C=60°,則△ABC的面積S=
3
2
3
2

查看答案和解析>>

同步練習冊答案